Skip to main content

Advertisement

Log in

The Combined Effect of Al2O3 Nanofluid and Coiled Wire Inserts in a Flat-Plate Solar Collector on Heat Transfer, Thermal Efficiency and Environmental CO2 Characteristics

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present study experimentally investigated the thermal efficiency, collector area, weight, embodied energy, environmental CO2 emissions of Al2O3/water nanofluid flow in a flat-plate solar collector and with coiled wire turbulators. The experiments were performed at \(\phi \) that is equal to 0.1%, 0.2% and 0.3% and volume flow rate from 120 to 300 L/h. Results indicate that the collector thermal efficiency increased with the increase of particle volume loadings and volume flow rates. The thermal efficiency of the collector with water circulate is 53%, whereas it is enhanced to 65% at \(\phi \) = 0.3% nanofluid, and it is further enhanced to 77% for \(\phi \) = 0.3% nanofluid with 10-mm coiled wire insert in a collector tube at a volume flow rate of 300 L/h. The collector area is declined to 8.66% (\(\phi \) = 0.1%), 14% (\(\phi \) = 0.2%) and 18.66% (\(\phi \) = 0.3%) for nanofluids. The collector area is further reduced to 31.33% for \(\phi \) = 0.3% nanofluid and with a coiled wire pitch of 10 mm. The materials embodied energy is decreased to 1144.36 MJ for \(\phi \) = 0.3% nanofluid, and it is further reduced to 1022.6 MJ with the use of a wire coil pitch of 10 mm, but for water, it is 1451.4 MJ. The Nusselt number is increased to 23.22% with ϕ = 0.3% nanofluid, and it further enhanced to 53.56% at same particle loadings and coiled wire pitch of 10 mm over the water data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

\(A_{{\text{c}}}\) :

Collector surface area (m2)

c p :

Heat capacity (J/kg K)

\(c_{{{\text{p}},{\text{bf}}}}\) :

Specific heat of base fluid (J/kg K)

\(c_{{{\text{p}},{\text{np}}}}\) :

Specific heat of nanoparticles (J/kg K)

\(c_{{{\text{p}},{\text{nf}}}}\) :

Specific heat of nanofluid (J/kg K)

d :

Tube diameter (m)

\(d_{{\text{h}}}\) :

Hydraulic diameter (m)

\(d_{{\text{c}}}\) :

Coiled wire diameter (m)

e :

Wire thickness (m)

\(F_{{\text{R}}}\) :

Heat removal factor

\(G_{{\text{T}}}\) :

Global solar radiation (W/m2)

\(\dot{m}\) :

Mass flow rate (kg/s)

Nu:

Nusselt number

P :

Pitch (m)

Pr:

Prandtl number

\(\dot{Q}_{{\text{u}}}\) :

Useful energy gained rate (W)

Re:

Reynolds number

\(T_{{\text{a}}}\) :

Ambient temperature (K)

\(T_{{\text{i}}}\) :

Fluid inlet temperature (K)

\(T_{{\text{o}}}\) :

Fluid outlet temperature (K)

\(U_{{\text{L}}}\) :

Overall heat loss coefficient (W/m2K)

\(W\) :

Weight (g)

\({\rm T}\alpha\) :

Absorptance–transmittance product

P :

Density (kg/m3)

\({\Delta }\) :

Particle size (nm)

B(2θ):

Half-maximum intensity peak (radians)

θ :

Maximum intensity peak angle

T :

Solar collector time constant (min)

\(\mu\) :

Viscosity (mPa s)

\(\eta_{{\text{i}}}\) :

Instantaneous collector efficiency

\({\Phi }\) :

Particle volume concentration (%)

CNT:

Carbon nanotubes

EG:

Ethylene glycol

MWCNT:

Multi-walled carbon nanotubes

SDBS:

Sodium dodecylbenzene sulfonate

References

  1. Choi, S.U.S.; Eastman, J.A.: Enhanced heat transfer using nanofluids. US Patent 275 6221275 (2001)

  2. Yousefi, T.; Shojaeizadeh, E.; Veysi, F.; Zinadini, S.: An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector. Sol. Energy 86, 771–779 (2012)

    Article  Google Scholar 

  3. Yousefi, T.; Veysi, F.; Shojaeizadeh, E.; Zinadini, S.: An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew. Energy 39, 293–298 (2012)

    Article  Google Scholar 

  4. Said, Z.; Saidur, R.; Sabiha, M.A.; Hepbasli, A.; Rahim, N.A.: Energy and exergy efficiency of a flat plate solar collector using pH treated Al2O3 nanofluid. J. Clean. Prod. 112, 3915–3926 (2016)

    Article  Google Scholar 

  5. Hussein, O.A.; Habib, K.; Muhsan, A.S.; Saidur, R.; Alawi, O.A.; Ibrahim, T.K.: Thermal performance enhancement of a flat plate solar collector using hybrid nanofluid. Sol. Energy 204, 208–222 (2020)

    Article  Google Scholar 

  6. Choudhary, S.; Sachdeva, A.; Kumar, P.: Influence of stable zinc oxide nanofluid on thermal characteristics of flat plate solar collector. Renew. Energy 152, 1160–1170 (2020)

    Article  Google Scholar 

  7. Tong, Y.; Lee, H.; Kang, W.; Cho, H.: Energy and exergy comparison of a flat-plate solar collector using water, Al2O3 nanofluid, and CuO nanofluid. Appl. Therm. Eng. 159, 113959 (2019)

    Article  Google Scholar 

  8. Polvongsri, S.; Kiatsiriroat, T.: Performance analysis of flat-plate solar collector having silver nanofluid as a working fluid. Heat Transf. Eng. 35, 1183–1191 (2014)

    Article  Google Scholar 

  9. Natarajan, E.; Sathish, R.: Role of nanofluids in solar water heater. Int. J. Adv. Manuf. Technol. (2009). https://doi.org/10.1007/s00170-008-1876-8

    Article  Google Scholar 

  10. Otanicar, T.; Phelan, P.E.; Prasher, R.S.; Rosengarten, G.; Taylor, R.A.: Nanofluid based direct absorption solar collector. J. Renew. Sustain. Energy 2, 033102 (2010)

    Article  Google Scholar 

  11. Shojaeizadeh, E.; Veysi, F.; Yousefi, T.; Davodi, F.: An experimental investigation on the efficiency of a flat-plate solar collector with binary working fluid: a case study of propylene glycol (PG)–water. Exp. Therm. Fluid Sci. 53, 218–226 (2014)

    Article  Google Scholar 

  12. Karami, M.; Akhavan-Bahabadi, M.A.; Delfani, S.; Raisee, M.: Experimental investigation of CuO nanofluid-based direct absorption solar collector for residential applications. Renew. Sustain. Energy Rev. 52, 793–801 (2015)

    Article  Google Scholar 

  13. Kiliç, F.; Menlik, T.; Sözen, A.: Effect of titanium dioxide/water nanofluid use on thermal performance of the flat plate solar collector. Sol. Energy 164, 101–108 (2018)

    Article  Google Scholar 

  14. Chaji, H.; Ajabshirchi, Y.; Esmaeilzadeh, E.; Heris, S.Z.; Hedayatizadeh, M.; Kahani, M.: Experimental study on thermal efficiency of flat plate solar collector using TiO2/water nanofluid. Mod. Appl. Sci. 7, 60–69 (2013)

    Article  Google Scholar 

  15. Said, Z.; Saidur, R.; Rahim, N.A.: Energy and exergy analysis of a flat plate solar collector using different sizes of aluminium oxide based nanofluid. J. Clean. Prod. 133, 518–530 (2016)

    Article  Google Scholar 

  16. Zamzamian, A.; Keyanpour Rad, M.; Kiani Neyestani, M.; Jamal-Abad, M.T.: An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors. Renew. Energy 71, 658–664 (2014)

    Article  Google Scholar 

  17. Said, Z.; Sabiha, M.A.; Saidur, R.; Hepbasli, A.; Rahim, N.A.; Mekhilef, S.; Ward, T.A.: Performance enhancement of a flat plate solar collector using titanium dioxide nanofluid and polyethylene glycol dispersant. J. Clean. Prod. 92, 343 (2015)

    Article  Google Scholar 

  18. Sabiha, M.A.; Saidur, R.; Hassani, S.; Said, Z.; Mekhilef, S.: Energy performance of an evacuated tube solar collector using single walled carbon nanotubes nanofluids. Energy Convers. Manag. 105, 1377–1388 (2015)

    Article  Google Scholar 

  19. Jouybari, H.J.; Saedodin, S.; Zamzamian, A.; Nimvari, M.E.; Wongwises, S.: Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: An experimental study. Renew. Energy 114, 1407–1418 (2017)

    Article  Google Scholar 

  20. Mahian, O.; Kianifar, A.; Kalogirou, S.A.; Pop, I.; Wongwises, S.: A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 57, 582–594 (2013)

    Article  Google Scholar 

  21. Javadi, F.S.; Saidur, R.; Kamalisarvestani, M.: Investigating performance improvement of solar collectors by using nanofluids. Renew. Sust. Energy Rev. 28, 232–245 (2013)

    Article  Google Scholar 

  22. Garcia, A.; Vicente, P.G.; Viedma, A.: Experimental study of heat transfer enhancement with wire coil inserts in laminar-transition-turbulent regimes at different Prandtl numbers. Int. J. Heat Mass Transf. 48, 4640–4651 (2005)

    Article  Google Scholar 

  23. Garcia, A.; Solano, J.P.; Vicente, P.G.; Viedma, A.: Enhancement of laminar and transitional flow heat transfer in tubes by means of wire coil inserts. Int. J. Heat Mass Transf. 50, 3176–3189 (2007)

    Article  Google Scholar 

  24. Garcia, A.; Solano, J.P.; Vicente, P.G.; Viedma, A.: Flow pattern assessment in tubes with wire coil inserts in laminar and transition regimes. Int. J. Heat Fluid Flow 28, 516–525 (2007)

    Article  Google Scholar 

  25. Sundar, L.S.; Bhramara, P.; Ravi Kumar, N.T.; Singh, M.K.; Sousa, A.C.M.: Experimental heat transfer, friction factor and effectiveness analysis of Fe3O4 nanofluid flow in a horizontal plain tube with return bend and wire coil inserts. Int. J. Heat Mass Transf. 109, 440–453 (2017)

    Article  Google Scholar 

  26. Abdul Hamid, K.; Azmi, W.H.; Mamat, R.; Sharma, K.V.: Heat transfer performance of TiO2–SiO2 nanofluids in a tube with wire coil inserts. Appl. Therm. Eng. 152, 275–286 (2019)

    Article  Google Scholar 

  27. Goudarzi, K.; Jamali, H.: Heat transfer enhancement of Al2O3–EG nanofluid in a car radiator with wire coil inserts. Appl. Therm. Eng. (2017). https://doi.org/10.1016/j.applthermaleng.2017.03.016

    Article  Google Scholar 

  28. Akyürek, E.F.; Gelis, K.; Sahin, B.; Manay, E.: Experimental analysis for heat transfer of nanofluid with wire coil turbulators in a concentric tube heat exchanger. Results Phys. 9, 376–389 (2018)

    Article  Google Scholar 

  29. Sundar, L.S.; Singh, M.K.; Punnaiah, V.; Sousa, A.C.M.: Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts. Renew. Energy 119, 820–833 (2018)

    Article  Google Scholar 

  30. Sundar, L.S.; Kirubeil, A.; Punnaiah, V.; Singh, M.K.; Sousa, A.C.M.: Effectiveness analysis of solar flat plate collector with Al2O3 water nanofluids and with longitudinal strip inserts. Int. J. Heat Mass Transf. 127, 422–435 (2018)

    Article  Google Scholar 

  31. Pak, B.C.; Cho, Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 11, 151–170 (1998)

    Article  Google Scholar 

  32. Einstein, A.: Investigation on Theory of Brownian Motion, 1st edn. Dover publications (1956)

    Google Scholar 

  33. Maxwell, J.C.: A Treatise on Electricity and Magnetism, 2nd edn. Oxford University Press, Cambridge (1904)

    MATH  Google Scholar 

  34. ASHRAE Standard 93–2003, Methods of testing to determine the thermal performance of solar collectors, Atlanta, GA, USA (2003)

  35. Whillier, A.: Solar energy collection and its utilization for house heating. Sc. D. Thesis, MIT (1953)

  36. Whillier, A.: Design factors influencing collector performance, low temperature engineering. In: Application of Solar Energy, ASHRAE, New York (1967)

  37. Hottel, H.C.; Whillier, A.: Evaluation of fat plate collector performance. Trans. Config. Use Solar Energy 2(1), 74 (1958)

    Google Scholar 

  38. Bliss, R.W.: The derivation of several plate efficiency factors useful in the design of flat plate solar heat collectors. Sol. Energy 3, 55–64 (1959)

    Article  Google Scholar 

  39. Ardante, F.; Beccali, G.; Cellura, M.; Brano, V.L.: Life cycle assessment of a solar thermal collector. Renew Energy 30, 1031–1054 (2005)

    Article  Google Scholar 

  40. Faizal, M.; Saidur, R.; Mekhilef, S.; Hepbasli, A.; Mahbubul, I.M.: Energy, economic, and environmental analysis of a flat-plate solar collector operated with SiO2 nanofluid. Clean Technol Environ. Policy 17, 1457–1473 (2015)

    Article  Google Scholar 

  41. Stalin, P.M.J.; Arjunan, T.V.; Matheswaran, M.M.; Dolli, H.; Sadanandam, N.: Energy, economic and environmental investigation of a flat plate solar collector with CeO2/water nanofluid. J. Therm. Anal. Calorim. (2019). https://doi.org/10.1007/s10973-019-08670-2

    Article  Google Scholar 

  42. Gnielinski, V.: New equations for heat and mass transfer in turbulent pipe and channel flow. Int. Chem. Eng. 16, 359–368 (1976)

    Google Scholar 

  43. Akhavan-Behabadi, M.A.; Shahidi, M.; Aligoodarz, M.R.: An experimental study on heat transfer and pressure drop of MWCNT–water nanofluid inside horizontal coiled wire inserted tube. Int. Commun. Heat Mass Transf. 63, 62–72 (2015)

    Article  Google Scholar 

  44. Blasius, H.: Boundary layers in liquids with low friction. Z. Math. Phys. 56, 1–37 (1908)

    Google Scholar 

  45. Sharafeldin, M.A.; Gróf, G.; Abu-Nada, E.; Mahian, O.: Evacuated tube solar collector performance using copper nanofluid: energy and environmental analysis. Appl. Therm. Eng. 162, 114205 (2019)

    Article  Google Scholar 

  46. Sharafeldin, M.A.; Gróf, G.: Experimental investigation of flat plate solar collector using CeO2–water nanofluid. Energy Convers. Manag. 155, 32–41 (2018)

    Article  Google Scholar 

  47. Ghaderian, J.; Sidik, N.A.C.; Kasaeian, A.; Ghaderian, S.; Okhovat, A.; Pakzadeh, A.; Samion, S.; Yahy, W.J.: Performance of copper oxide/distilled water nanofluid in evacuated tube solar collector (ETSC) water heater with internal coil under thermo-syphon system circulations. Appl. Therm. Eng. 121, 520–536 (2017)

    Article  Google Scholar 

  48. Saleh, B.; Sundar, L.S.: Thermosyphon flat plate collector with nanodiamond-water nanofluids: properties, friction factor, heat transfer, thermal efficiency, and cost analysis. Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-021-05371-7

    Article  Google Scholar 

  49. Saleh, B.; Sundar, L.S.: Thermal efficiency, heat transfer, and friction factor analyses of MWCNT + Fe3O4/water hybrid nanofluids in a solar flat plate collector under thermosyphon condition. Processes 9, 180 (2021). https://doi.org/10.3390/pr9010180

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by Taif University Researchers Supporting Project Number (TURSP-2020/49), Taif University, Taif, Saudi Arabia. The authors would like to thank Taif University for financial support.

Funding

Taif University, TURSP-2020/49, B Saleh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Saleh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, B., Sundar, L.S., Aly, A.A. et al. The Combined Effect of Al2O3 Nanofluid and Coiled Wire Inserts in a Flat-Plate Solar Collector on Heat Transfer, Thermal Efficiency and Environmental CO2 Characteristics. Arab J Sci Eng 47, 9187–9214 (2022). https://doi.org/10.1007/s13369-021-06478-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06478-7

Keywords

Navigation