Skip to main content
Log in

Rainfall Intensity–Duration–Frequency (IDF) Curves: Effects of Uncertainty on Flood Protection and Runoff Quantification in Southwestern Saudi Arabia

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Southwestern Saudi Arabia experiences occasional flash floods, possibly due to an inadequate understanding of rainfall and runoff and a lack of infrastructure. Several studies have investigated rainfall intensity, duration, and runoff, while the infrastructure is not adequate to avoid floods. One possibility for the lack of adequate infrastructure might be the limitations in handling rainfall data. In this study, rainfall intensity–duration–frequency (IDF) curves were developed using the Gumbel distribution for five areas (Abha, Al-Baha, Bisha, Gizan, and Khamis Mushait) in southwestern Saudi Arabia. Four methods of calculating depth–duration relationships were applied. The 25-year daily maximum rainfall data were converted into hourly and sub-hourly data using these methods. The methods showed considerable variability in the IDF relationships, which may influence the essential protective measures against floods and runoff collection. The log-Pearson Type III (LPT III) distribution and RainyDay were also used to develop the 24-h IDF curves. The results show that Gumbel and LPT III can be used in regions with a lack of sub-daily rainfall data, while RainyDay can be used with caution in regions with no rainfall data. This study observed significant variability in the storage capacity requirements in different areas. The effects of methodological variability can be minimized by long-term monitoring of data, calibrating the methods using these data, and constructing watersheds to store the wide ranges of runoff. The areas showed significant differences in IDF curves, emphasizing the need for studying smaller areas rather than the entire region. A better understanding of the variability in IDF relationships may assist in controlling flash floods and maximizing runoff storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. BBC News: Flood deaths in Saudi Arabia rise to around 100. http://news.bbc.co.uk/2/hi/8384832.stm

  2. CNN World (Cable News Network) (2011). http://articles.cnn.com/2011-01-29/world/saudia.arabia.flooding_1_jeddah-rain-water-rescue-operations?_s=PM:WORLD

  3. Arab News: Flash flood fury leaves 7 dead in south. Published in Arab News on Monday, 5 August 2013. (2013). https://www.arabnews.com/news/460295

  4. FAO (Food and Agriculture Organization): Irrigation in the Middle East Region in Figures. Food and Agriculture Organization of the United Nations. FAO Water Reports 34, Rome (2009)

  5. MOWE (Ministry of Water and Electricity): Annual Report, Riyadh, Saudi Arabia. http://www.mowe.gov.sa/ENIndex.aspx

  6. MOEP (The Ministry of Economy and Planning): The ninth development plan (2010–2014), The Kingdom of Saudi Arabia (2010)

  7. Dawod, G.M.; Mirza, M.N.: GIS-based estimation of flood hazard impacts on road network in Makkah city, Saudi Arabia. Environ. Earth Sci. 67(8), 2205–2215 (2012)

    Article  Google Scholar 

  8. Abdelkarim, A.; Gaber, A.F.D.: Flood risk assessment of the Wadi Nu’man Basin, Mecca, Saudi Arabia (During the Period, 1988–2019) based on the integration of geomatics and hydraulic modeling: a case study. Water 11(9), 1887 (2019)

    Article  Google Scholar 

  9. Al-Zahrani, M.; Chowdhury, S.; Abo-Monasar, A.: Augmentation of surface water sources from spatially distributed rainfall in Saudi Arabia. J. Water Reuse Desalin. 5(3), 391–406 (2015)

    Article  Google Scholar 

  10. Evenari, M.: Ancient agriculture in the negev. Science 133, 976–986 (1961)

    Article  Google Scholar 

  11. Yuan, T.; Fengmin, L.; Puhai, L.; Yuan, T.; Fengmin, L.; Puhai, L.: Economic analysis of rainwater harvesting and irrigation methods, with an example from China. Agric. Water Manag. 60(3), 217–226 (2003)

    Article  Google Scholar 

  12. Sivanappan, R.K.: Rainwater harvesting tecniques. Rainwater Harvest. water Manag. 14, 10–15 (2006)

    Google Scholar 

  13. Bernard, M.M.: Formulas for rainfall intensities of long duration. Trans. Am. Soc. Civ. Eng. 96(1), 592–606 (1932)

    Article  Google Scholar 

  14. Hershfield, D.M.: Estimating the probable maximum precipitation. J. Hydraul. Div. 87(5), 99–116 (1961)

    Article  Google Scholar 

  15. Bell, F.C.: Generalized rainfall duration frequency relationships. J. Hydraul. Div., ASCE 95(1), 311–327 (1969)

    Article  Google Scholar 

  16. Chen, C.: Rainfall Intensity-Duration-Frequency Formulas. J. Hydraul. Eng. 109(12), 1603–1621 (1983)

    Article  Google Scholar 

  17. Kothyari, U.C.; Garde, R.J.: Rainfall intensity-duration-frequency formula for India. J. Hydraul. Eng. 118(2), 323–336 (1992)

    Article  Google Scholar 

  18. Al-Shaikh, A.: Rainfall frequency studies for Saudi Arabia. M.S. Thesis, Civ. Eng. Dep. King Saud Univ. Riyadh, Saudi Arab. (1985)

  19. Al-Dokhayel, A. A.: Regional rainfall frequency analysis for Qasim. Civ. Eng. Dep. King Saud Univ. Riyadh, Saudi Arab (1986)

  20. Elsebaie, I.H.: Developing rainfall intensity–duration–frequency relationship for two regions in Saudi Arabia. J. King Saud Univ. - Eng. Sci. 24(2), 131–140 (2012)

    Google Scholar 

  21. Ewea, H.A.; Elfeki, A.M.; Bahrawi, J.A.; Al-amri, N.S.: Modeling of IDF curves for stormwater design in Makkah Al Mukarramah region, The Kingdom of Saudi Arabia. Open Geosci. 10(1), 954–969 (2018)

    Article  Google Scholar 

  22. AlHassoun, S.A.: Developing an empirical formulae to estimate rainfall intensity in Riyadh region. J. King Saud Univ. - Eng. Sci. 23(2), 81–88 (2011)

    Google Scholar 

  23. Awadallah, A.G.; ElGamal, M.; ElMostafa, A.; ElBadry, H.: Developing intensity-duration-frequency curves in scarce data region: an approach using regional analysis and satellite data. Engineering 03(03), 215–226 (2011)

    Article  Google Scholar 

  24. Subyani, A.M.; Al-Modayan, A.A.; Al-Ahmadi, F.S.: Topographic, seasonal and aridity influences on rainfall variability in Western Saudi Arabia. J. Environ. Hydrol. 18, 1–11 (2010)

    Google Scholar 

  25. Ewea, H.A.; Elfeki, A.M.; Al-Amri, N.S.: Development of intensity–duration–frequency curves for the Kingdom of Saudi Arabia. Geomat. Nat. Hazards Risk 8(2), 570–584 (2017)

    Article  Google Scholar 

  26. Abdeen, W.M.; Awadallah, A.G.; Hassan, N.A.: Investigating regional distribution for maximum daily rainfall in arid regions: case study in Saudi Arabia. Arab. J. Geosci. 13(13), 1–18 (2020)

    Article  Google Scholar 

  27. Agri, P.J.; Zainudini, M.A.; Marriott, M.J.; Mirjat, M.S.; Chandio, A.S.: Establishing intensity duration frequency curves for Sistan and Balochistan provinces of Iran. Agric. Eng. Vet. Sci. 27(2), 115–124 (2011)

    Google Scholar 

  28. Jalee, L.A.; Farawn, M.A.: Developing rainfall intensity-duration-freqency relationship for Basrah City. Kufa J. Eng. 5(1), 105–112 (2014)

    Google Scholar 

  29. Rathnam, E.; Jayakumar, V.K.; Cunnane, C.: Runoff computation in a data scarce environment for urban stormwater management. A case study. J-Global 29(Theme B), 446–454 (2001)

    Google Scholar 

  30. Nhat, L.; Tachikawa, Y.; Takara, K.: Establishment of intensity–duration–frequency Curves for Precipitation in the Monsoon Area of Vietnam. Annu. Disas. Prev. Res. Inst., Kyoto Univ. 49(B) (2006)

  31. Solaiman, T.A.; Simonovic, S.P.: Development of probability based intensity-duration-frequency curves under climate change (2011)

  32. Suchithra, A. S.; Agarwal, S.: IDF curve generation for historical rainfall events. In: Proceeding of National Conference on Emerging Trends in Civil Engineering (2020)

  33. Al-anazi, K.; Ibrahim, H.: Development of intensity-duration-frequency relationships for Abha City in Saudi Arabia. Int. J. Comput. Eng. Res. 10(3), 58–65 (2013)

    Google Scholar 

  34. Subyani, A.M.: Geostatistical study of annual and seasonal mean rainfall patterns in southwest Saudi Arabia/Distribution géostatistique de la pluie moyenne annuelle et saisonnière dans le Sud-Ouest de l’Arabie Saoudite. Hydrol. Sci. J. 49(5), 49 (2009)

    Google Scholar 

  35. S. Moazami and M. R. Najafi, “A comprehensive evaluation of GPM-IMERG V06 and MRMS with hourly ground-based precipitation observations across Canada,” J. Hydrol., vol. 594, p. 125929, 2021.

  36. Villarini, G.; Krajewski, W.F.: Empirically-based modeling of spatial sampling uncertainties associated with rainfall measurements by rain gauges. Adv. Water Resour. 31(7), 1015–1023 (2008)

    Article  Google Scholar 

  37. Al-Areeq, A.M.; Al-Zahrani, M.A.; Sharif, H.O.: The performance of physically based and conceptual hydrologic models: a case study for makkah watershed, Saudi Arabia. Water (Switzerland) 13(8), 1098 (2021)

    Google Scholar 

  38. Bhuiyan, M.A.E.; Yang, F.; Biswas, N.K.; Rahat, S.H.; Neelam, T.J.: Machine learning-based error modeling to improve GPM IMERG precipitation product over the brahmaputra River Basin. Forecasting 2(3), 248–266 (2020)

    Article  Google Scholar 

  39. Sakib, S.; Ghebreyesus, D.; Sharif, H.O.: Performance evaluation of imerg gpm products during tropical storm imelda. Atmosphere (Basel) 12(6), 687 (2021)

    Article  Google Scholar 

  40. Omranian, E.; Sharif, H.O.: Evaluation of the global precipitation measurement (GPM) satellite rainfall products over the lower Colorado River Basin, Texas. J. Am. Water Resour. Assoc. 54(4), 882–898 (2018)

    Article  Google Scholar 

  41. Sunilkumar, K.; Yatagai, A.; Masuda, M.: Preliminary evaluation of GPM-IMERG rainfall estimates over three distinct climate zones with APHRODITE. Earth Space Sci. 6(8), 1321–1335 (2019)

    Article  Google Scholar 

  42. Al-Areeq, A.M.; Al-Zahrani, M.A.; Sharif, H.O.: “Physically-based, distributed hydrologic model for Makkah watershed using GPM satellite rainfall and ground rainfall stations.” Geomatics Nat. Hazards Risk 12(1), 1234–1257 (2021)

    Article  Google Scholar 

  43. Reich, B.M.: Short-duration rainfall-intensity estimates and other design aids for regions of sparse data. J. Hydrol. 1(1), 3–28 (1963)

    Article  Google Scholar 

  44. Al-Khalaf, H.: Predicting short-duration, high-intensity rainfall in Saudi Arabia. M.S. Thesis, Fac. Coll. Grad. Stud. King Fahad Univ. Pet. Miner. Dhahran. (1997)

  45. Saad, A.Y.: Manual of Applied Hydrology for Dams, 1st edn. Ministry Of Agriculture & Irrigation, Yemen (2003)

    Google Scholar 

  46. MTO: Ministry of Transportation of Ontario Drainage Management Manual. Drainage and Hydrology Section, Transportation Engineering Branch, and Quality Standards Division, Ministry of Transportation of Ontario, Ottawa, Ontario, Canada (1997)

  47. Wheater, H.S.; Laurentis, P.; Hamilton, G.S.: Design rainfall characteristics for South-West Saudi Arabia. Proc. Inst. Civ. Eng. 87(4), 517–538 (1989)

    Google Scholar 

  48. Ahmed, Z.; Rao, D.; Reddy, K.; Raj, E.: Rainfall intensity variation for observed data and derived data: a case study of Imphal. ARPN J. Eng. Appl. Sci. 11(7), 1506–1513 (2012)

    Google Scholar 

  49. NRC (National Research Council): Committee on Techniques for Estimating Probabilities of Extreme Floods, Estimating Probabilities of Extreme Floods, Methods and Recommended Research. National Academy Press, Washington D.C. (1988). https://nrc.canada.ca/en

  50. Raiford, J.P.; Aziz, N.M.; Khan, A.A.; Powell, D.N.: Rainfall depth-duration-frequency relationships for SC related papers rainfall depth-duration-frequency relationships for South Carolina, North Carolina, and Georgia. Am. J. Environ. Sci. 3(2), 78–84 (2007)

    Article  Google Scholar 

  51. Manley, R.: BELL’S FORMULA = A REAPPRAISAL. VIII’ Journées Hydrol., pp. 121–131 (1992)

  52. Te Chow, V.: A general formula for hydrologic frequency analysis. Trans. Am. Geophys. Union 32(2), 231 (1951)

    Article  Google Scholar 

  53. Wright, D.B.; Mantilla, R.; Peters-lidard, C.D.: A remote sensing-based tool for assessing rainfall-driven hazards. Environ. Model. Softw. 90, 34–54 (2017)

    Article  Google Scholar 

  54. Wright, D.B.; Smith, J.A.; Villarini, G.; Baeck, M.L.: Estimating the frequency of extreme rainfall using weather radar and stochastic storm transposition. J. Hydrol. 488, 150–165 (2013)

    Article  Google Scholar 

  55. Huffman, G.J.; Adler Bolvin, R.F.; Nelkin, E. J.: The TRMM multi-satellite precipitation analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, pp. 3–22. Springer, Dordrecht (2010)

    Chapter  Google Scholar 

  56. Subyani, A.M.; Al-Amri, N.S.: IDF curves and daily rainfall generation for Al-Madinah city, western Saudi Arabia. Arab. J. Geosci. 8(12), 11107–11119 (2015)

    Article  Google Scholar 

  57. Awadallah, A.G.; Younan, N.S.: Conservative design rainfall distribution for application in arid regions with sparse data. J. Arid Environ. 79, 66–75 (2012)

    Article  Google Scholar 

  58. Nouh, M.: A comparison of three methods for regional flood frequency analysis in Saudi Arabia. Adv. Water Resour. 10, 212–219 (1987)

    Article  Google Scholar 

  59. Şen , Z.; Al-Suba’i, K.: Hydrological considerations for dam siting in arid regions: a Saudi Arabian study. Hydrol. Sci. J. 47(2), 173–186 (2002)

    Article  Google Scholar 

  60. Holko, L.; Kostka, Z.: Impact of landuse on runoff in mountain catchments of different scales. Soil Water Res 3(3), 113–120 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through project No. RG 1302-1 & 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed AL-Areeq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Areeq, A., Al-Zahrani, M. & Chowdhury, S. Rainfall Intensity–Duration–Frequency (IDF) Curves: Effects of Uncertainty on Flood Protection and Runoff Quantification in Southwestern Saudi Arabia. Arab J Sci Eng 46, 10993–11007 (2021). https://doi.org/10.1007/s13369-021-06142-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06142-0

Keywords

Navigation