Skip to main content
Log in

Electrical Structures of the Lithosphere Along the Prydz Belt: Magnetotelluric Study at Chinese Zhongshan Station, East Antarctica

  • Research Article-Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Zhongshan Station (69° 22′24.76 ′′s, 76°22′14.28′′E) is located in the Westoden Peninsula, Larsemann Hills area, Princess Elizabeth Islands, East Antarctica. Here, we report results from a magnetotelluric experiment and delineate the deep electrical conductivity structure beside the Zhongshan Station by using the data acquired during the 36th Chinese Antarctic Scientific Expedition. Magnetotelluric (MT) data have the advantages of wide range and large depth in geophysical surveying. Two-dimensional inversion of MT data was conducted using the nonlinear conjugate gradient algorithm, and the conductivity structure under the Larsemann Hills area was described. The simulation results show that the high resistivity level in the shallow layer represents the Quaternary glacial sediments on the surface of bedrock. Further, the underground electrical structure within the depth of 10 km in the middle section shows obvious horizontal difference and drastic longitudinal variation. The depth of 10–40 km is characterized by thick layer and low resistivity, the electrical structure is relatively uniform, and the low resistivity structure is geographically inclined slightly to the northeast. This section is characterized by low resistivity structure. The upper part of the southwest section is characterized by high resistance, and the middle and deep part (below 10 km) is characterized by relatively uniform and low resistance terranes. The discovery can be interpreted as follows: The low resistivity body in the southwest segment represents the core cratonic crustal structure of the southeast polar shield, while the low resistivity body with complex electrical structure in the middle 10 km depth of the section can be interpreted as the collision zone between the Prydz Orogenic Belt and the East Antarctic craton. Our study confirms the position of the Prydz Orogenic Belt under the Larsemann Hills of East Antarctica and depicts the electrical structure of the collisional amalgamation area, which provides evidence for further study of the splicing of the Gondwana archicontinent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gregory, J.W.: The work of the National Antarctic Expedition. Nature 63, 609–612 (1901)

    Google Scholar 

  2. Dalziel, I.W.D.: Pacific margins of Laurentia and East Antarctica as a conjugate rift pair: evidence and implications for an Eocambrian supercontinent. Geology 119(6), 598–601 (1991)

    Google Scholar 

  3. Borg, S.G.; DePaolo, D.J.: Laurentia, Australia, and Antarctica as a Late Proterozoic supercontinent; constraints from isotopic mapping. Geology 22(4), 307–310 (1994)

    Google Scholar 

  4. Rogers, J.J.W.; Unrug, R.; Sultan, M.: Tectonic assembly of Gondwana. J. Geodyn. 19(1), 1–34 (1995)

    Google Scholar 

  5. Rogers, J.J.W.; Santosh, M.: Continents and supercontinents. Oxford University Press, New York (2004)

    Google Scholar 

  6. Rogers, J.J.W.; Santosh, M.: Tectonics and surface effects of the supercontinent Columbia. Gondwana Res. 15(3–4), 373–380 (2009)

    Google Scholar 

  7. Meert, J.G.; Lieberman, B.S.: The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran-Cambrian radiation. Gondwana Res. 14(1–2), 5–21 (2008)

    Google Scholar 

  8. Satish-Kumar, M.; Hokada, T.; Kawakami, T.; Dunkley, D.J.: Geosciences research in East Antarctica (0°E–60°E): present status and future perspectives. Geol. Soc. London Spec. Pub. 308(1), 1–20 (2008)

    Google Scholar 

  9. Santosh, M.; Maruyama, S.; Sato, K.: Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern India? Gondwana Res. 16(2), 321–341 (2009)

    Google Scholar 

  10. Boger, S.D.: Antarctica-before and after Gondwana. Gondwana Res. 19(2), 335–371 (2011)

    Google Scholar 

  11. Brown, D.; Morrissey, L.; Goodge, J.; Hand, M.: Absence of evidence for Palaeoproterozoic eclogite-facies metamorphism in East Antarctica: no record of subduction orogenesis during Nuna development. Sci. Rep. (2020). https://doi.org/10.1038/s41598-021-86184-4

    Article  Google Scholar 

  12. Zhao, Y.; Song, B.; Wang, Y.; Ren, L.; Chen, T.: Geochronology of the late granite in the Larsemann Hills, East Antarctica. In: Yoshida, Y.; Kaminuma, K.; Shiraishi, K. (Eds.) Recent Progress in Antarctic Earth Science, pp. 155–161. Terra Scientific Publishing, Tokyo (1992)

    Google Scholar 

  13. Zhao, Y.; Liu, X.; Song, B.; Zhang, Z.; Li, J.; Yao, Y.; Wang, L.: Constraints on the stratigraphic age of metasedimentary rocks from the Larsemann Hills, East Antarctica: possible implications for Neoproterozoic tectonics. Precambr. Res. 75(3–4), 175–188 (1995)

    Google Scholar 

  14. Zhao, J.X.; Ellis, D.J.; Kilpatrick, J.A.; McCulloch, M.T.: Geochemical and Sr–Nd isotopic study of charnockites and related rocks in the northern Prince Charles Mountains, East Antarctica: implications for charnockite petrogenesis and Proterozoic crustal evolution. Precambr. Res. 81(1–2), 37–66 (1997)

    Google Scholar 

  15. Zhao, Y.; Liu, X.H.; Wang, S.C.; Song, B.: Syn- and post-tectonic cooling and exhumation in the Larsemann Hills. East Antarctica. Episodes. 20(2), 122–127 (1997)

    Google Scholar 

  16. Fitzsimons, I.C.W.: Proterozoic basement provinces of southwestern Australia, and their correlation with Antarctica. In: Yoshida, Y.; Windley, B.F.; Dasgupta, S. (Eds.), Proterozoic East Gondwana: Supercontinent Assembly and Breakup: Geological Society, London, Special Publications, 206, pp. 93–130 (2003)

  17. Boger, S.D.; Miller, J.M.: Terminal suturing of Gondwana and the onset of the Ross-Delamerian Orogeny: the cause and effect of an Early Cambrian reconfiguration of plate motions. Earth Planet. Sci. Lett. 219, 35–48 (2004)

    Google Scholar 

  18. Payne, J.L.; Hand, M.; Barovich, K.; Reid, A.; Evans, D.A.D.: Correlations and reconstruction models for the 2500–1500 Ma evolution of the Mawson continent. In: Reddy, S.M.; Mazumder, R.; Evans, D.A.D.; Collins, A.S. (Eds.) Palaeoproterozoic Supercontinents and Global Evolution: Geological Society. Special Publications, London (2009)

    Google Scholar 

  19. Snape, I.; Black, L.P.; Harley, S.L.: Refinement of the timing of magmatism, high temperature metamorphism and deformation in the Vestfold Hills, East Antarctica, from new U-Pb zircon geochronology, in: Ricci C A, ed. The Antarctic region, Geological evolution and processes. Siena, Italy: Terra Antartica Pub. 139–148 (1997)

  20. Harley, S.L.; Snape, I.; Black, L.P.: The evolution of a layered metaigneous complex in the Rauer Group, east Antarctica; evidence for a distinct Archean terrane. Precambrian Res. 89, 175–205 (1998)

    Google Scholar 

  21. Liu, X.C.; Jahn, B.M.; Zhao, Y.; Li, M.; Li, H.; Liu, X.H.: Late Pan-African granitoids from the Grove Mountains, East Antarctica: age, origin and tectonic implications. Precambrian Res. 145(1), 131–154 (2006)

    Google Scholar 

  22. Liu, X.C.; Zhao, Z.; Zhao, Y.; Chen, J.; Liu, X.H.: Pyroxene exsolution in mafic granulites from the Grove Mountains, East Antarctica: constraints on the Pan-African metamorphic conditions. Eur. J. Mineral. 15(1), 55–65 (2003)

    Google Scholar 

  23. Liu, X.H.; Zhao, Y.; Liu, X.C.; Yu, L.: Geology of the Grove Mountains in East Antarctica–new evidence for the final suture of Gondwana Land. Sci. China (Ser. D). 46, 305–319 (2003)

    Google Scholar 

  24. Murthy, D.N.; Veeraswamy, K.; Harinarayana, T.; Singh, U.K.; Santosh, M.: Electrical structure beneath Schirmacher Oasis, East Antarctica: a magnetotelluric study[J]. Polar Res. 32(1), 37–41 (2013)

    Google Scholar 

  25. Liu, X.C.; Zhao, Y.; Liu, X.H.; Geological aspects of the Grove Mountains, East Antarctica. Antarctica at the close of a millennium. In: Gamble, J.A., Skinner, D.N.B., Henrys, S. (Eds.), R. Soc. N. Z. Bull. 35, 161–166 (2002)

  26. Zhao, Y.; Liu, X.H.; Liu, X.C.; Song, B.: Pan-African events in Prydz Bay, East Antarctica and its inference on East Gondwana tectonics. In: Yoshida, M.; Windley, B.; Dasgupta, S. (Eds.) Proterozoic East Gondwana: Supercontinent Assembly and Breakup: Geological Society of London. Special Publication, London (2003)

    Google Scholar 

  27. Liu, X.; Jahn, B.M.; Zhao, Y.; Zhao, G.; Liu, X.L.: Geochemistry and geochronology of high-grade rocks from the Grove Mountains , East Antarctica: Evidence for an Early Neoproterozoic basement metamorphosed during a single Late Neoproterozoic/Cambrian tectonic cycle. Precambrian Res. 158(1), 93–118 (2007)

    Google Scholar 

  28. Liu, X.; Zhao, Y.; Zhao, G.; Ping, J.; Xu, A.G.: Petrology and Geochronology of Granulites from the McKaskle Hills, Eastern Amery Ice Shelf Antarctica and Implications for the Evolution of the Prydz Belt. J. Petrol. 48(8), 659–663 (2007)

    Google Scholar 

  29. Liu, X.C.; Zhao, Y.; Zhao, G.; Jian, P.; Xu, G.: Petrology and geochronology of granulites from the McKaskle Hills, eastern Amery Ice Shelf, Antarctica, and implications for the evolution of the Prydz Belt. J. Petrol. 48(8), 659–663 (2007)

    Google Scholar 

  30. Cui, Y.; Liu, X.; Liu, C.; Liu, J.: SHRIMP U-Pb zircon geochronology of granites from Sansom Island, Prydz Bay, East Antarctica. Adv. Polar Sci. 029(002), 135–143 (2018)

    Google Scholar 

  31. Sun, B.; Siegert, M.J.; Mudd, S.M.; Sugden, D.; Fujita, S.; Cui, X.B.; Jiang, Y.Y.; Tang, X.Y.; Li, Y.S.: The Gamburtsev mountains and the origin and early evolution of the Antarctic Ice Sheet. Nature 459(7247), 690–693 (2009)

    Google Scholar 

  32. Sun, B.; Moore, J.C.; Zwinger, T.; Zhao, L.; Steinhage, D.; Tang, X.Y.; Zhang, D.; Cui, X.B.; Martin, C.: How old is the ice beneath Dome A, Antarctica? Cryosphere. 8(3), 1121–1128 (2014)

    Google Scholar 

  33. Cui, X.; Sun, B.; Guo, J.; Wang, T.; Zhang, D.: A new detailed ice thickness and subglacial topography DEM for Dome A East Antarctica. Polar Sci. 9(4), 354–358 (2015)

    Google Scholar 

  34. Cui, X.; Jeofry, H.; Greenbaum, J.S.; Guo, J.; Li, L.; Lindzey, L.E.; Habbal, F.A.; Wei, W.; Young, D.A.; Ross, N.; Morlighem, M.; Jong, L.M.; Roberts, J.L.; Blankenship, D.D.; Bo, S.; Siegert, M.J.: Bed topography of Princess Elizabeth Land in East Antarctica. Earth Syst. Sci. Data 12, 2765–2774 (2020). https://doi.org/10.5194/essd-12-2765-2020

    Article  Google Scholar 

  35. Craddock, C.: Geologic Map of Antarctica. American Geographical Society Bulletin, New York (1972)

    Google Scholar 

  36. Tingey, R.J.: The Geology of Antarctica. Clarendon Press, Oxford (1991)

    Google Scholar 

  37. Guo, J.; Wang, K.; Zeng, Z.; Li, L.; Zhang, J.; Preliminary Long-Period Magnetotelluric Investigation at the Edge of Ice Sheet in East Antarctica. 2020. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3–2020, XXIV ISPRS Congress.

  38. Kong, X.R.; Zhang, J.J.; Jiao, C.M.: Magneto telluric deep sounding study ln the region of Zhongshan station, east Antarctica. Antarctic Res. 4(6), 32–36 (1994)

    Google Scholar 

  39. Vozoff, K.: The magnetotelluric method. In M.N. Nabighian (ed.): Electromagnetic methods in applied geophysics. Pp. 641–711. Tulsa, OK: Society of Exploration Geophysics (1991)

  40. Harinarayana, T.; Naganjaneyulu, K.; Manoj, C.; Patro, B.P.K.; Kareemunnisa, B.S.; Murthy, D.N.; Madhusudan, R.; Kumaraswamy, V.T.C.; Virupakshi, G.: Magnetotelluric investigations along Kuppam-Palani Geotransect, South India*2-D modeling results. Memoir Geol. Soc. India. 50, 107–124 (2003)

    Google Scholar 

  41. Wannamaker, P.E.; Stodt, J.A.; Olsen, S.L.: Dormant state of rifting in central west Antarctica implied by magnetotelluric profiling. Geophys. Res. Lett. 23, 2983–2987 (1996)

    Google Scholar 

  42. Wannamaker, P.E.; Stodt, J.A.; Pellerin, L.; Olsen, S.L.; Hall, D.B.: Structure and thermal regime beneath the South Pole region, East Antarctica, from magnetotelluric measurements. Geophys. J. Int. 157(1), 36–54 (2010)

    Google Scholar 

  43. Gough, D.I.: Seismic reflectors, conductivity, water and stress in the continental crust. Nature 323(6084), 143–144 (1986)

    Google Scholar 

  44. Constable, S.C.; Duba, A.: Electrical conductivity of olivine, a dunite, and the mantle. J Geophys Res-Solid Earth Planets 95(B5), 6967–6978 (1990)

    Google Scholar 

  45. Jones, A.G.: Electrical conductivity of the continental lower crust. In: Fountain, D.M., et al. (Eds.) continental lower crust. Elsevier, Amsterdam (1992)

    Google Scholar 

  46. Jones, A.G.: Imaging the continental upper mantle using electromagnetic methods. Lithos 48, 57–80 (1999)

    Google Scholar 

  47. Fanning, C.M.; Dally, S.J.; Bennett, V.C.; Ménot, R.P.; Peucat, J.J.; Oliver, G.J.H.; Monnier, O.: The “Mawson Block”: once contiguous Archaean to Proterozoic crust in the East Antarctic Shield and the Gawler Craton. In: Ricci, C.A. (Ed.), Abstracts, 7th International Symposium on Antarctic Earth Sciences, Sienna. Fanning, C.M.; Reid, A.; Tearle, G.S.; A geochronological framework for the Gawler Craton, South Australia. Geological Survey of South Australia Bulletin 55. Federico, L., Capponi, G., Crispini, L., 2006. The Ross orogeny of the Transantarctic Mountains: a northern Victoria Land perspective. International Journal of Earth Science. 95, 759–770 (2007)

  48. Payne, J.L.; Barovich, K.; Hand, M.: Provenance of metasedimentary rocks in the northern Gawler Craton, Australia: implications for Palaeoproterozoic reconstructions. Precambr. Res. 148(3–4), 275–291 (2006)

    Google Scholar 

  49. Daly, S.J.; Fanning, C.M.; Fairclough, M.C.: Tectonic evolution and exploration potential of the Gawler Craton. AGSO J Geol. Geophys. 17(3), 145–168 (1998)

    Google Scholar 

  50. Goodge, J.W.; Myrow, P.; Williams, I.S.; Bowring, S.A.: Age and provenance of the Beardmore Group, Antarctica: constraints on Rodinia supercontinent break-up. J. Geol. 110, 393–406 (2002)

    Google Scholar 

  51. Goodge, J.W.; Williams, I.S.; Myrow, P.: Provenance of Neoproterozoic and Lower Paleozoic siliciclastic rocks of the central Ross orogen, Antarctica: detrital record of rift-, passive-and active-margin sedimentation. Geol. Soc. Am. Bull. 116(9), 1253–1279 (2004)

    Google Scholar 

  52. Myrow, P.M.; Pope, M.C.; Goodge, J.W.; Fischer, W.; Palmer, A.R.: Depositional history of pre-Devonian strata and timing of Ross orogenic tectonism in the central Transantarctic Mountains. Antarctica. Geol Soc America Bulletin 114(9), 1070–1088 (2002)

    Google Scholar 

  53. McFarlane, C.R.M.: Palaeoproterozoic evolution of the Challenger Au deposit, South Australia, from monazite geochronology. J. Metamorph. Geol. 24(1), 75–87 (2010)

    Google Scholar 

  54. Will, T.M.; Zeh, A.; Gerdes, A.; Frimmel, H.E.; Millar, I.L.; Schmädicke, E.: Palaeoproterozoic to Palaeozoic magmatic and metamorphic events in the Shackleton Range, East Antarctica: constraints from zircon and monazite dating, and implications for the amalgamation of Gondwana. Precambr. Res. 172(1–2), 25–45 (2009)

    Google Scholar 

  55. Clark, D.J.; Hensen, B.J.; Kinny, P.D.: Geochronological constraints for a two-stage history of the Albany-Fraser Orogen Western Australia. Precambrian Res. 102(3–4), 155–183 (2000)

    Google Scholar 

  56. Giles, D.; Betts, P.G.; Lister, G.S.: 1.8–1.5-Ga links between the North and South Australian Cratons and the Early-Middle Proterozoic configuration of Australia. Tectonophysics. 380(1), 27–41 (2004)

    Google Scholar 

  57. Jones, S.A.: Mesoproterozoic Albany-Fraser Orogen-related deformation along the southeastern margin of the Yilgarn Craton. Aust. J. Earth Sci. 53(2), 213–234 (2006)

    Google Scholar 

  58. Halpin, J.A.; Crawford, A.J.; Direen, N.G.; Coffin, M.F.; Forbes, C.J.; Borissova, I.: Naturaliste Plateau, offshore Western Australia: a submarine window into Gondwana assembly and breakup. Geology 36(10), 807–810 (2008)

    Google Scholar 

  59. Boger, S.D.; Wilson, C.J.L.; Fanning, C.M.: An Archaean province in the southern Prince Charles Mountains, East Antarctica: U-Pb zircon evidence for c. 3170 Ma granite plutonism and c. 2780 Ma partial melting and orogenesis. Precamb. Res. 145, 207–228 (2006)

    Google Scholar 

  60. Direen, N.G.; Crawford, A.J.: Fossil seaward-dipping reflector sequences preserved in southeastern Australia: a 600 Ma volcanic passive margin in eastern Gondwanaland. J. Geol. Soc. London 160(6), 985–990 (2003)

    Google Scholar 

  61. Bentley, C.R.: Configuration and structure of the subglacial crust. In: Tingey, R.J. (Ed.) The geology of Antarctica. Oxford Science Publications, Oxford (1991)

    Google Scholar 

  62. Dallmann, W.; Austrheim, H.; Buchernurminen, K.; Ohta, Y.: Geology around the Norwegian Antarctic station “Troll”, Jutulsessen, Dronning Maud Land. J. Opt. Soc. Am. 70(13), 3278–3291 (1990)

    Google Scholar 

  63. Harley, S.L.: Archaean-Cambrian crustal development of East Antarctica: metamorphic characteristics and tectonic implications. In: Yoshida, M., et al. (Eds.) Proterozoic East Gondwana: supercontinent assembly and breakup. Geological Society of London Special Publication, London (2003)

    Google Scholar 

  64. Guo, Y.U.; Xiao, Q.B.; Man, L.I.: Anisotropic model study for the phase roll out of quadrant data in magnetotellurics:with examples of upper-lower structure. Chin. J. Geophys. 62(2), 763–778 (2019)

    Google Scholar 

  65. Rodi, W.L.; Mackie, R.L.: Nonlinear Conjugate Gradients Algorithm For 2-D Magnetotelluric Inversion. Geophysics 66(1), 174–187 (2001)

    Google Scholar 

  66. Danesi, S.; Morelli, A.: Group velocity of Rayleigh waves in the Antarctic region. Phys. Earth Planet. Interior. 122(1–2), 55–66 (2000)

    Google Scholar 

  67. Ritzwoller, M.H.; Shapiro, N.M.; Levshin, A.L.; Leahy, G.M.: Crustal and upper mantle structure beneath Antarctica and surrounding oceans. Journal of Geophysical Research* Solid Earth. 106, 30645–30670 (2001)

  68. Bhattacharya, B.B.; Majumder, T.J.: Bedrock elevation studies in Queen Maud Land, Antarctica. In B.B. Bhattacharya (ed.): Scientific report: fourth Indian scientific expedition to Antarctica. Technical Publication No. 4. Pp. 35- 41. New Delhi: Department of Ocean Development, Government of India. (1987)

  69. Jacobs, J.; Hansen, B.T.; Henjes-Kunst, F.; Thomas, R.J.; Weber, K.; Bauer, W.; Armstrong, R.A.; Cornell, D.H.: New age constraints on the Proterozoic/Lower Palaeozoic evolution of Heimefrontfjella, East Antarctica, and its bearing on Rodinia/Gondwana correlations. Terra Antarct. 6, 377–389 (1999)

    Google Scholar 

  70. Hole, M.J.; Lemasurier, W.E.: Tectonic controls on the geochemical composition of Cenozoic, mafic alkaline volcanic rocks from West Antarctica. Contrib. Miner. Petrol. 117(2), 187–202 (1994)

    Google Scholar 

  71. Bell, R.E.; Studinger, M.; Fahnestock, M.A.; Shuman, C.A.: Tectonically controlled subglacial lakes on the flanks of the Gamburtsev subglacial mountains, East Antarctica. Geophys. Res. Lett. 33(2), 356–360 (2006)

    Google Scholar 

  72. Ferraccioli, F.; Finn, C.A.; Jordan, T.A.; Bell, R.E.; Anderson, L.M.; Damaske, D.: East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature 479(7373), 388–392 (2011)

    Google Scholar 

  73. Wagner, S.; Lindner, H.: Interpretation of geomagnetic anomalies in Dronning Maud Land. East Antarctica. Antarctic Science. 3(3), 317–321 (1991)

    Google Scholar 

  74. Wannamaker, P.E.; Stodt, J.A.; Olsen, S.L.: Dormant state of rifting below the Byrd Subglacial Basin, West Antarctica, implied by magnetotelluric (MT) profiling. Geophys. Res. Lett. 23(21), 2983–2986 (2013)

    Google Scholar 

  75. Wannamaker, P.E.; Stodt, J.A.; Pellerin, L.; Olsen, S.L.; Hall, D.B.: Structure and thermal regime beneath the South Pole region, East Antarctica, from magnetotelluric measurements[J]. Geophys. J. Int. 157(1), 36–54 (2010)

    Google Scholar 

  76. Peacock, J.R.; Selway, K.: Magnetotelluric investigation of the Vestfold Hills and Rauer Group, East Antarctica. J. Geophys. Res. Solid Earth. 121(4), 2258–2273 (2016)

    Google Scholar 

  77. Zhao, Y.; Song, B.; Zhang, Z.Q.; Fu, Y.L.; Chen, T.Y.; Wang, Y.B.; Ren, L.D.; Yao, Y.P.: Pan African thermal events in Larsemann Hills and its adjacent areas East Antarctica. Sci. China 23(9), 1001–1008 (1993)

    Google Scholar 

  78. Fitzsimons, I.C.W.: A review of tectonic events in the East Antarctic Shield and their implications for Gondwana and earlier supercontinents. J. Afr. Earth. 31(1), 3–23 (2000)

    MathSciNet  Google Scholar 

  79. Phillips, G.; Wilson, C.J.L.; Phillips, D.; Szczepanski, S.K.: Thermochronological (Ar-40/Ar-39) evidence of Early Palaeozoic basin inversion within the southern Prince Charles Mountains, East Antarctica: Implications for East Gondwana[J]. J. Geol. Soc. 164(4), 771–784 (2007)

    Google Scholar 

  80. Jacobs, J.; Fanning, C.M.; Hemjes-Kunst, F.; Olesch, M.; Paech, H.: Continuation of the Mozambique belt in to East Antarctica: Grenville-age metamorphism and polyphase Pan-African high-grade events in central Dronning Maud Land. J. Geol. 106(4), 385–406 (1998)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41876227, 41941006, 41941007, 41974044), Shanghai Sailing Program (21YF1452100) and the National Key R&D Program of China (2019YFC1509102). Subject Editor M.N. Çağatay and the anonymous reviewers are thanked for their constructive suggestions and critical comments, which have greatly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enzhao Xiao or Juzhi Deng.

Ethics declarations

Conflict of interest

The author declared that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Xiao, E., Deng, J. et al. Electrical Structures of the Lithosphere Along the Prydz Belt: Magnetotelluric Study at Chinese Zhongshan Station, East Antarctica. Arab J Sci Eng 47, 695–707 (2022). https://doi.org/10.1007/s13369-021-05793-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05793-3

Keywords

Navigation