Skip to main content
Log in

Analyzing the Impact of Fog and Atmospheric Turbulence on the Deployment of Free-Space Optical Communication Links in India

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper aims to study the possibility of deployment of free-space optical communication (FSOC) links in India. We have focused on different locations of India for investigating the feasibility of the FSOC link, and it includes the coastal and inland locations, representing the major commercial areas of India. The atmospheric data related to daily visibilities and wind speeds, over 5 years, along with altitude of locations have been studied to calculate the scattering and turbulent losses. The losses due to scattering and turbulence are further added to find the total atmospheric losses for all locations. The atmospheric losses are maximum for the coastal location of Mumbai, and the inland location of Chandigarh has recorded minimum atmospheric losses. We have calculated maximum achievable link ranges for different locations mathematically by using the power link margin equation and atmospheric losses. Further, the results have revealed that the longest FSOC link of an optimal range of 3.24 km can be deployed in Chandigarh, while Mumbai has the shortest FSOC link of range 1.76 km under the average atmospheric conditions. Additionally, we have designed an FSOC system using Optisystem 13.0 software and analyzed the system performance for different locations of India by incorporating the atmospheric losses of different locations. Furthermore, we have verified the results of the mathematical and simulation model. The maximum achievable link ranges calculated by using the mathematical and simulation model have demonstrated close similarity with an average percentage error of 2.42% only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the Indian Meteorological Department. Restrictions apply to the availability of these data, which were used under license for this study. Data are available at [http://dsp.imdpune.gov.in/] with the permission of the Indian Meteorological Department.

References

  1. Mansour, A.; Mesleh, R.; Abaza, M.: New challenges in wireless and free space optical communications. Opt. Lasers Eng. 89, 95–108 (2017)

    Article  Google Scholar 

  2. Alshaer, N.; Ismail, T.; Nasr, M.E.: Enhancing earth-to-satellite FSO system spectrum efficiency with adaptive M-ary PSK and SIMO in presence of scintillation and beam wander. AEUE Int. J. Electron. Commun. 125, 1–9 (2020)

    Google Scholar 

  3. Chowdhury, M.Z.; Hossan, M.T.; Islam, A.; Jang, Y.M.: A comparative survey of optical wireless technologies: architectures and applications. IEEE Access 6, 9819–9840 (2018)

    Article  Google Scholar 

  4. Malik, A.; Singh, P.: Free space optics: current applications and future challenges. Int. J. Opt. 2015, 1–7 (2015)

    Article  Google Scholar 

  5. Uysal, M.; Nouri, H.: Optical wireless communications—an emerging technology. In: 2014 16th International Conference on Transparent Optical Networks (ICTON), Graz, Austria, pp. 1–7 (2014)

  6. Khalighi, M.A.; Uysal, M.: Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor. 16(4), 2231–2258 (2014)

    Article  Google Scholar 

  7. Goodwin, F.E.: A review of operational laser communication systems. Proc. IEEE 58(10), 1746–1752 (1970)

    Article  Google Scholar 

  8. Gfeller, F.R.; Bapst, U.: Wireless in-house data communication via diffuse infrared radiation. Proc. IEEE 67(11), 1474–1486 (1979)

    Article  Google Scholar 

  9. Boroson, D.M.; Biswas, A.; Edwards, B.L.: MLCD: overview of NASA’s Mars laser communications demonstration system. In: Proceedings of SPIE 5338, Free-Space Laser Communication Technologies XVI, San Jose, United States, vol. 5338, pp. 16–28 (2004)

  10. Meena, M.; Toshniwal, S.K.: Performance evaluation of manchester encoded input signal FSO system under different atmospheric condition for different wavelength. Int. J. Trend Sci. Res. Dev. 3(1), 1331–1335 (2018)

    Google Scholar 

  11. Ciaramella, E.; Arimoto, Y.; Contestabile, G.; Presi, M.; D’Errico, A.; Guarino, V.; Matsumoto, M.: 1.28 terabit/s (32×40 Gbit/s) WDM transmission system for free space optical communications. IEEE J. Sel. Areas Commun. 27(9), 1639–1645 (2009)

    Article  Google Scholar 

  12. Yeh, C.; Chang, Y.; Chow, C.; Lin, W.: Utilizing polarization-multiplexing for free space optical communication transmission with security operation. Opt. Fiber Technol. 52, 1–4 (2019)

    Article  Google Scholar 

  13. Son, I.K.; Mao, S.: A survey of free space optical networks. Digit. Commun. Netw. 3(2), 67–77 (2017)

    Article  Google Scholar 

  14. Chauhan, S.; Miglani, R.; Kansal, L.; Gaba, G.S.; Masud, M.: Performance analysis and enhancement of free space optical links for developing state-of-the-art smart city framework. Photonics 7(4), 1–16 (2020)

    Article  Google Scholar 

  15. Alzenad, M.; Shakir, M.Z.; Yanikomeroglu, H.; Alouini, M.S.: FSO-based vertical backhaul/fronthaul framework for 5G+ wireless networks. IEEE Commun. Mag. 56(1), 218–224 (2018)

    Article  Google Scholar 

  16. Tan, L.; Chen, Y.; Zhao, L.; Yu, S.; Kang, D.; Yang, Q.; Ma, J.: Optimal coupling condition analysis of free-space optical communication receiver based on few-mode fiber. Opt. Fiber Technol. 53, 1–6 (2019)

    Article  Google Scholar 

  17. Chaleshtory, Z.N.; Gholami, A.; Ghassemlooy, Z.; Sedghi, M.: Experimental investigation of environment effects on the FSO link with turbulence. IEEE Photonics Technol. Lett. 29(17), 1435–1438 (2017)

    Article  Google Scholar 

  18. Yeh, C.H.; Gu, C.S.; Guo, B.S.; Chang, Y.J.; Chow, C.W.; Tseng, M.C.; Chen, R.B.: Hybrid free space optical communication system and passive optical network with high splitting ratio for broadcasting data traffic. J. Opt. 20(12), 1–6 (2018)

    Article  Google Scholar 

  19. Balasaraswathi, M.; Singh, M.; Malhotra, J.; Dhasarathan, V.: A high-speed radio-over-free-space optics link using wavelength division multiplexing-mode division multiplexing-multibeam technique. Comput. Electr. Eng. 87, 1–12 (2020)

    Article  Google Scholar 

  20. Roumelas, G.D.; Nistazakis, H.E.; Gappmair, W.; Gripeos, P.J.; Christofilakis, V.: Time jitter influence on the performance of gamma–gamma turbulence FSO links with various modulation schemes. J. Mod. Opt. 67(8), 721–729 (2020)

    Article  MathSciNet  Google Scholar 

  21. Kaushal, H.; Jain, V.K.; Subrat, K.: Free Space Optical Communication, 1st edn. Springer (2017)

    Book  Google Scholar 

  22. Sousa, I.; Queluz, M.P.; Rodrigues, A.: An efficient visibility prediction framework for free-space optical systems. Wirel. Pers. Commun. 96(3), 3483–3498 (2017)

    Article  Google Scholar 

  23. Esmail, M.A.; Fathallah, H.; Alouini, M.S.: Outdoor FSO communications under fog: attenuation modeling and performance evaluation. IEEE Photonics J. 8(4), 1–22 (2016)

    Article  Google Scholar 

  24. Cang, L.; Zhao, H.K.; Zheng, G.X.: The impact of atmospheric turbulence on terahertz communication. IEEE Access 7, 88685–88692 (2019)

    Article  Google Scholar 

  25. Kshatriya, A.J.; Acharya, Y.B; Aggarwal, A.: Analysis of free space optical link in ahmedabad weather conditions. In: 2013 IEEE Conference on Information & Communication Technologies, Thuckalay, India, pp. 272–276 (2013)

  26. Shah, D.; Kothari, D.: Optimization of 2.5 Gbps WDM-FSO link range under different rain conditions in Ahmedabad Dhaval. In: 2014 Annual IEEE India Conference (INDICON), Pune, India, pp. 1–4 (2014)

  27. Kshatriya, A.J.; Acharya, Y.B.; Aggarwal, A.K.; Majumdar, A.K.: Estimation of FSO link availability using climatic data. J. Opt. (India) 45(4), 324–330 (2016)

    Article  Google Scholar 

  28. Kiran, K.V.; Kumar, V.; Turuk, A.K.; Das, S.K.: Estimation of link margin for performance analysis of FSO network. Commun. Comput. Inf. Sci. 827, 444–458 (2018)

    Google Scholar 

  29. Ghalot, R.; Madhu, C.; Kaur, G.; Singh, P.: Link estimation of different indian cities under fog weather conditions. Wirel. Pers. Commun. 105(4), 1215–1234 (2019)

    Article  Google Scholar 

  30. Immadi, G.; Venkata Narayana, M.; Kotamraju, S.K.; Sree Madhuri, A.: Estimating the performance of free space optical link under adverse weather conditions by using various models. Wirel. Pers. Commun. 103(2), 1603–1613 (2018)

    Article  Google Scholar 

  31. Vavoulas, A.; Sandalidis, H.G.; Varoutas, D.: Weather effects on FSO network connectivity. J. Opt. Commun. Netw. 4(10), 734–740 (2012)

    Article  Google Scholar 

  32. El-nayal, M.K.; Aly, M.M.; Fayed, H.A.; AbdelRassoul, R.A.: Adaptive free space optic system based on visibility detector to overcome atmospheric attenuation. Results Phys. 14, 1–7 (2019)

    Article  Google Scholar 

  33. Asmaa Zaki, M.; Fayed, H.A.; El Aziz, A.A.; Aly, M.H.: The influence of varying the optical wavelength on ISL performance recognizing high bit rates. J. Electron. Commun. Eng. 9(1), 64–70 (2014)

    Google Scholar 

  34. Gebhart, M.; Leitgeb, E.; Muhammad, S.S.; Flecker, B.; Chlestil, C.; Naboulsi, M.A.; de Fornel, F.; Sizun, H.: Measurement of light attenuation in dense fog conditions for FSO applications. In: Proceedings of SPIE, Atmospheric Optical Modeling, Measurement, and Simulation, San Diego, United States, 31 July–4 August, vol. 5891, pp. 1–12 (2005)

  35. Basahel, A.; Rafiqul, I.M.; Habaebi, M.H.; Suriza, A.Z.: Visibility effect on the availability of a terrestrial free space optics link under a tropical climate. J. Atmos. Solar Terr. Phys. 143–144, 47–52 (2016)

    Article  Google Scholar 

  36. Badar, N.; Jha, R.K.; Towfeeq, I.: Performance analysis of an 80 (8 × 10) Gbps RZ-DPSK based WDM-FSO system under combined effects of various weather conditions and atmospheric turbulence induced fading employing Gamma-Gamma fading model. Opt. Quant. Electron. 50(1), 1–11 (2018)

    Article  Google Scholar 

  37. Niaz, A.; Qamar, F.; Ali, M.; Farhan, R.; Islam, M.K.: Performance analysis of chaotic FSO communication system under different weather conditions. Trans. Emerg. Telecommun. Technol. 30(2), 1–13 (2019)

    Google Scholar 

  38. Federici, J.F.; Ma, J.; Moeller, L.: Review of weather impact on outdoor terahertz wireless communication links. Nano Commun. Netw. 10, 13–26 (2016)

    Article  Google Scholar 

  39. Khanna, H.; Aggarwal, M.; Ahuja, S.: Statistical characteristics and performance evaluation of FSO links with misalignment fading influenced by correlated sways. AEUE Int. J. Electron. Commun. 85, 118–125 (2018)

    Article  Google Scholar 

  40. Kashani, M.A.; Uysal, M.; Kavehrad, M.: A novel statistical channel model for turbulence-induced fading in free-space optical systems. J. Lightwave Technol. 33(11), 2303–2312 (2015)

    Article  Google Scholar 

  41. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media. SPIE Publications, 2005.

  42. Latal, J.; Vitasek, J.; Hajek, L.; Vanderka, A.; Martinek, R.; Vasinek, V.: Influence of simulated atmospheric effect combined with modulation formats on FSO systems. Opt. Switch. Netw. 33, 184–193 (2019)

    Article  Google Scholar 

  43. Ata, Y.; Baykal, Y.: Transmittance of multi gaussian optical beams for uplink applications in atmospheric turbulence. IEEE J. Sel. Areas Commun. 33(9), 1996–2001 (2015)

    Article  Google Scholar 

  44. Nor, N.A.M.; Ghassemlooy, Z.; Bohata, J.; Saxena, P.; Komanec, M.; Zvanovec, S.; Bhatnagar, M.; Khalighi, M.-A.: Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel. J. Lightwave Technol. 35(1), 45–53 (2017)

    Article  Google Scholar 

  45. Wilfert, O.; Dordova, L.: Calculation and comparison of turbulence attenuation by different methods. Radioengineering 19, 162–167 (2010)

    Google Scholar 

  46. Arockia Bazil Raj, A.; Arputha Vijaya Selvi, J.; Durairaj, S.: Comparison of different models for ground-level atmospheric attenuation prediction with new models according to local weather data for FSO applications. J. Opt. Commun. 36(2), 181–186 (2015)

    Article  Google Scholar 

  47. Alimi, I.A.; Shahpari, A.; Monteiro, P.P.; Teixeira, A.L.: Effects of diversity schemes and correlated channels on OWC systems performance. J. Mod. Opt. 64(21), 2298–2305 (2017)

    Article  Google Scholar 

  48. Prokes, A.: Atmospheric effects on availability of free space optics systems. Opt. Eng. 48(6), 1–10 (2009)

    Article  Google Scholar 

  49. Garlinska, M.; Pregowska, A.; Masztalerz, K.: From mirrors to free-space optical communication—historical aspects in data transmission. Future Internet 12(11), 1–18 (2020)

    Article  Google Scholar 

  50. Mikołajczyk, J.; Bielecki, Z.; Bugajski, M.; Piotrowski, J.; Wojtas, J.; Gawron, W.; Szabra, D.; Prokopiuk, A.: Analysis of free-space optics development. Metrol. Meas. Syst. 24(4), 653–674 (2017)

    Article  Google Scholar 

  51. Kaushal, H.; Kaddoum, G.: Optical communication in space: challenges and mitigation techniques. IEEE Commun. Surv. Tutor. 19(1), 57–96 (2017)

    Article  Google Scholar 

  52. Paudel, R.; Ghassemlooy, Z.; Le-Minh, H.; Rajbhandari, S.: Modelling of free space optical link for ground-to-train communications using a Gaussian source. IET Optoelectron. 7(1), 1–8 (2013)

    Article  Google Scholar 

  53. Ghassemlooy, Z.; Popoola, W.; Rajbhandari, S.: Optical Wireless Communication: System and Channel Modelling with Matlab, 2nd edn. CRC Press, Boca Raton (2019)

    Book  Google Scholar 

Download references

Acknowledgements

We are very grateful to the Indian Meteorological Department for supplying the meteorological data, related to the atmospheric conditions of different locations, for conducting this research study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Mittal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Mittal, N. Analyzing the Impact of Fog and Atmospheric Turbulence on the Deployment of Free-Space Optical Communication Links in India. Arab J Sci Eng 47, 2691–2710 (2022). https://doi.org/10.1007/s13369-021-05763-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05763-9

Keywords

Navigation