Abstract
In the global race of development, a huge amount of wastes having different characteristics and potential for environmental pollution are generated from various activities such as manufacturing, mining, processing, treatments, agriculture, etc. Considering the pollution threats to all three components of the environment (air, water and soil), it is highly essential to assess the levels of pollution associated with these wastes so that suitable remedial measures can be adopted. When untreated hazardous wastes are disposed on the ground or in the landfills, there is always a possibility of groundwater contamination due to the transport of leachate generated from the disposed wastes. In order to predict the groundwater pollution levels at different locations of the aquifers and at different times, several models suited to the characteristics of the concerned hazardous wastes and aquifers have been widely reported in literature. This paper presents a comprehensive literature review on groundwater contamination by hazardous wastes and its different aspects, including the types of hazardous contaminants, aquifers, contaminant transport mechanisms, contaminant transport modeling, software available for modeling contaminant transport in aquifers, groundwater sustainability and a case study on groundwater quality prediction.





Similar content being viewed by others
References
EPA: Hazardous Waste Listings. Hazard Waste List A User-Friendly Ref Doc 1–118 (2012)
Bodrud-Doza, M.; Islam, A.R.M.T.; Ahmed, F.; Das, S.; Saha, N.; Rahman, M.S.: Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in central Bangladesh. Water Sci. 30, 19–40 (2016). https://doi.org/10.1016/j.wsj.2016.05.001
Franklin, R.E.; Quisenberry, V.L.; Gossett, B.J.; Murdock, E.C.: Selection of herbicide alternatives based on probable leaching to groundwater. Weed Technol. 8, 6–16 (1994)
Herrero-Hernández, E.; Pose-Juan, E.; Álvarez-Martín, A.; Andrades, M.S.; Rodríguez-Cruz, M.S.; Sánchez-Martín, M.J.: Pesticides and degradation products in groundwaters from a vineyard region: optimization of a multiresidue method based on SPE and GC-MS. J. Sep. Sci. 35, 3492–3500 (2012). https://doi.org/10.1002/jssc.201200380
Nawab, J.; Wang, X.; Khan, S.; Tang, Y.T.; Rahman, Z.; Ali, A.; Dotel, J.; Li, G.: New insights into the bioaccumulation of persistent organic pollutants in remote alpine lakes located in Himalayas, Pakistan. Environ. Pollut. (2020). https://doi.org/10.1016/j.envpol.2020.114952
Ríos, J.M.; Lana, N.B.; Ciocco, N.F.; Covaci, A.; Barrera-Oro, E.; Moreira, E.; Altamirano, J.C.: Implications of biological factors on accumulation of persistent organic pollutants in Antarctic notothenioid fish. Ecotoxicol. Environ. Saf. 145, 630–639 (2017). https://doi.org/10.1016/j.ecoenv.2017.08.009
Abuabdou, S.M.A.; Ahmad, W.; Aun, N.C.; Bashir, M.J.K.: A review of anaerobic membrane bioreactors (AnMBR) for the treatment of highly contaminated landfill leachate and biogas production: effectiveness, limitations and future perspectives. J. Clean. Prod. 255, 120215 (2020). https://doi.org/10.1016/j.jclepro.2020.120215
Chen, C.-S.; Tu, C.; Chen, S.-J.; Chen, C.: Simulation of groundwater contaminant transport at a decommissioned landfill site—a case study, Tainan City, Taiwan. Int. J. Environ. Res. Public Health 13, 467 (2016). https://doi.org/10.3390/ijerph13050467
Li, W.; Achal, V.: Environmental and health impacts due to e-waste disposal in China—a review. Sci. Total Environ. 737, 139745 (2020). https://doi.org/10.1016/j.scitotenv.2020.139745
Wu, C.; Zhu, H.; Luo, Y.; Teng, Y.; Song, J.; Chen, M.: Levels and potential health hazards of PCBs in shallow groundwater of an e-waste recycling area, China. Environ. Earth Sci. 74, 4431–4438 (2015). https://doi.org/10.1007/s12665-015-4427-2
Ismail, H.; Hanafiah, M.M.: A review of sustainable e-waste generation and management: present and future perspectives. J. Environ. Manag. 264, 110495 (2020). https://doi.org/10.1016/j.jenvman.2020.110495
Beiyuan, J.; Tsang, D.C.W.; Yip, A.C.K.; Zhang, W.; Ok, Y.S.; Li, X.-D.: Risk mitigation by waste-based permeable reactive barriers for groundwater pollution control at e-waste recycling sites. Environ. Geochem. Health 39, 75–88 (2017). https://doi.org/10.1007/s10653-016-9808-2
Han, W.; Gao, G.; Geng, J.; Li, Y.; Wang, Y.: Ecological and health risks assessment and spatial distribution of residual heavy metals in the soil of an e-waste circular economy park in Tianjin, China. Chemosphere 197, 325–335 (2018). https://doi.org/10.1016/j.chemosphere.2018.01.043
Sulaymon, A.H.; Gzar, H.A.: Experimental investigation and numerical modeling of light nonaqueous phase liquid dissolution and transport in a saturated zone of the soil. J. Hazard Mater. 186, 1601–1614 (2011). https://doi.org/10.1016/j.jhazmat.2010.12.035
Pasha, A.Y.; Hu, L.; Meegoda, J.N.: Numerical simulations of a light nonaqueous phase liquid (LNAPL) movement in variably saturated soils with capillary hysteresis. Can. Geotech. J. 51, 1046–1062 (2014). https://doi.org/10.1139/cgj-2012-0165
Jeong, J.; Charbeneau, R.J.: An analytical model for predicting LNAPL distribution and recovery from multi-layered soils. J. Contam. Hydrol. 156, 52–61 (2014). https://doi.org/10.1016/j.jconhyd.2013.09.008
Huang, J.; Goltz, M.N.: Semianalytical solutions for transport in aquifer and fractured clay matrix system. Water Resour. Res. 51, 7218–7237 (2015). https://doi.org/10.1002/2014WR016073
Stoppiello, M.G.; Lofrano, G.; Carotenuto, M.; Viccione, G.; Guarnaccia, C.; Cascini, L.: A comparative assessment of analytical fate and transport models of organic contaminants in unsaturated soils. Sustainability 12, 2949 (2020). https://doi.org/10.3390/su12072949
Lee, K.Y.: Modeling long-term transport of contaminants resulting from dissolution of a coal tar pool in saturated porous media. J. Environ. Eng. 130, 1507–1513 (2004). https://doi.org/10.1061/(ASCE)0733-9372(2004)130:12(1507)
Birla, S.; Yadav, P.K.; Mahalawat, P.; Händel, F.; Chahar, B.R.; Liedl, R.: Influence of recharge rates on steady-state plume lengths. J. Contam. Hydrol. 235, 103709 (2020). https://doi.org/10.1016/j.jconhyd.2020.103709
Şengör, S.S.; Ünlü, K.: Modeling contaminant transport and remediation at an acrylonitrile spill site in Turkey. J. Contam. Hydrol. 150, 77–92 (2013). https://doi.org/10.1016/j.jconhyd.2013.02.010
Yin, Y.; Sykes, J.F.; Normani, S.D.: Impacts of spatial and temporal recharge on field-scale contaminant transport model calibration. J. Hydrol. 527, 77–87 (2015). https://doi.org/10.1016/j.jhydrol.2015.04.040
Piscopo, A.N.; Neupauer, R.M.; Kasprzyk, J.R.: Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ. J. Contam. Hydrol. 190, 29–43 (2016). https://doi.org/10.1016/j.jconhyd.2016.03.005
Guo, Z.; Fogg, G.E.; Brusseau, M.L.; LaBolle, E.M.; Lopez, J.: Modeling groundwater contaminant transport in the presence of large heterogeneity: a case study comparing MT3D and RWhet. Hydrogeol. J. 27, 1363–1371 (2019). https://doi.org/10.1007/s10040-019-01938-9
Xie, H.; Yan, H.; Feng, S.; Wang, Q.; Chen, P.: An analytical model for contaminant transport in landfill composite liners considering coupled effect of consolidation, diffusion, and degradation. Environ. Sci. Pollut. Res. 23, 19362–19375 (2016). https://doi.org/10.1007/s11356-016-7147-6
Feng, S.J.; Bai, Z.B.; Zheng, Q.T.; Lu, S.F.; Zhang, X.L.: A finite-volume numerical model for temporal and spatial variability of methane oxidation in landfill covers. Comput. Geotech. 122, 103510 (2020). https://doi.org/10.1016/j.compgeo.2020.103510
Ciftci, E.; Avci, C.B.; Borekci, O.S.; Sahin, A.U.: Assessment of advective–dispersive contaminant transport in heterogeneous aquifers using a meshless method. Environ. Earth Sci. 67, 2399–2409 (2012). https://doi.org/10.1007/s12665-012-1686-z
Ghoraba, S.M.; Zyedan, B.A.; Rashwan, I.M.H.: Solute transport modeling of the groundwater for quaternary aquifer quality management in Middle Delta, Egypt. Alex. Eng. J. 52, 197–207 (2013). https://doi.org/10.1016/j.aej.2012.12.007
Rodriguez-Galiano, V.; Mendes, M.P.; Garcia-Soldado, M.J.; Chica-Olmo, M.; Ribeiro, L.: Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain). Sci. Total. Environ. 476–477, 189–206 (2014). https://doi.org/10.1016/j.scitotenv.2014.01.001
Jean-Baptiste, J.; Le Gal La Salle, C.; Verdoux, P.: Use of mixing models to explain groundwater quality time and space variation in a narrowed fluctuating alluvial aquifer. Appl. Geochem. 121, 104700 (2020). https://doi.org/10.1016/j.apgeochem.2020.104700
Chen, J.S.; Liu, C.W.; Liang, C.P.; Lai, K.H.: Generalized analytical solutions to sequentially coupled multi-species advective–dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition. J. Hydrol. 456–457, 101–109 (2012). https://doi.org/10.1016/j.jhydrol.2012.06.017
Nair, R.N.; Sunny, F.; Manikandan, S.T.: Modelling of decay chain transport in groundwater from uranium tailings ponds. Appl. Math. Model. 34, 2300–2311 (2010). https://doi.org/10.1016/j.apm.2009.10.038
Chopra, M.; Rastogi, R.; Kumar, A.V.; Sunny, F.; Nair, R.N.: Response surface method coupled with first-order reliability method based methodology for groundwater flow and contaminant transport model for the uranium tailings pond site. Environ. Model. Assess. 18, 439–450 (2013). https://doi.org/10.1007/s10666-012-9352-0
Chakraborty, R.; Ghosh, A.: Analysis of 1D contaminant migration through saturated soil media underlying aquifer using FDM. J. Hazard. Toxic Radioact. Waste 16, 229–242 (2012). https://doi.org/10.1061/(asce)hz.2153-5515.0000125
Bai, B.; Li, H.; Xu, T.; Chen, X.: Analytical solutions for contaminant transport in a semi-infinite porous medium using the source function method. Comput. Geotech. 69, 114–123 (2015). https://doi.org/10.1016/j.compgeo.2015.05.002
Das, P.; Begam, S.; Singh, M.K.: Mathematical modeling of groundwater contamination with varying velocity field. J. Hydrol. Hydromech. 65, 192–204 (2017). https://doi.org/10.1515/johh-2017-0013
Kheirabadi, M.; Niksokhan, M.H.; Omidvar, B.: Colloid-associated groundwater contaminant transport in homogeneous saturated porous media: mathematical and numerical modeling. Environ. Model. Assess. 22, 79–90 (2017). https://doi.org/10.1007/s10666-016-9518-2
Kocabas, I.; Bulbul, M.: Modeling solute/contaminant transport in heterogeneous aquifers. Environ. Sci. Pollut. Res. 22, 3298–3313 (2015). https://doi.org/10.1007/s11356-014-3827-2
Fiori, A.; Zarlenga, A.; Bellin, A.; Cvetkovic, V.; Dagan, G.: Groundwater contaminant transport: prediction under uncertainty, with application to the MADE transport experiment. Front. Environ. Sci. 7, 1–16 (2019). https://doi.org/10.3389/fenvs.2019.00079
Nan, T.; Wu, J.; Guadagnini, A.; Zeng, X.; Liang, X.: Random walk evaluation of Green’s functions for groundwater flow in heterogeneous aquifers. J. Hydrol. 588, 125029 (2020). https://doi.org/10.1016/j.jhydrol.2020.125029
Banaei, S.M.A.; Javid, A.H.; Hassani, A.H.: Numerical simulation of groundwater contaminant transport in porous media. Int. J. Environ. Sci. Technol. (2020). https://doi.org/10.1007/s13762-020-02825-7
Yan, J.M.; Vairavamoorthy, K.; Gorantiwar, S.D.: Contaminant transport model for unsaturated soil using fuzzy approach. J. Environ. Eng. 132, 1489–1497 (2006). https://doi.org/10.1061/(asce)0733-9372(2006)132:11(1489)
Dvory, N.Z.; Kuznetsov, M.; Livshitz, Y.; Gasser, G.; Pankratov, I.; Lev, O.; Adar, E.; Yakirevich, A.: Modeling sewage leakage and transport in carbonate aquifer using carbamazepine as an indicator. Water Res. 128, 157–170 (2018). https://doi.org/10.1016/j.watres.2017.10.044
Fomin, S.; Chugunov, V.; Hashida, T.: Simulation of contaminant transport in a fractured porous aquifer. J. Fluids Eng. Trans. ASME 129, 1157–1163 (2007). https://doi.org/10.1115/1.2754327
Fan, X.; Sun, S.; Wei, W.; Kou, J.: Numerical simulation of pollutant transport in fractured Vuggy porous karstic aquifers. J. Appl. .Math 2011, 1–41 (2011). https://doi.org/10.1155/2011/498098
Zhao, Y.; Zhang, Y.K.; Liang, X.: Analytical solutions of three-dimensional groundwater flow to a well in a leaky sloping fault-zone aquifer. J. Hydrol. 539, 204–213 (2016). https://doi.org/10.1016/j.jhydrol.2016.05.029
Morales, T.; Angulo, B.; Uriarte, J.A.; Olazar, M.; Arandes, J.M.; Antiguedad, I.: Solute transport characterization in karst aquifers by tracer injection tests for a sustainable water resource management. J. Hydrol. 547, 269–279 (2017). https://doi.org/10.1016/j.jhydrol.2017.02.009
Zhu, Q.; Wen, Z.; Jakada, H.: A new solution to transient single-well push–pull test with low-permeability non-Darcian leakage effects. J. Contam. Hydrol. 234, 103689 (2020). https://doi.org/10.1016/j.jconhyd.2020.103689
Chen, Y.; Yeh, H.; Chang, K.: A mathematical solution and analysis of contaminant transport in a radial two-zone confined aquifer. J. Contam. Hydrol. 138–139, 75–82 (2012). https://doi.org/10.1016/j.jconhyd.2012.06.006
Hsieh, P.F.; Der, Y.H.: Semi-analytical and approximate solutions for contaminant transport from an injection well in a two-zone confined aquifer system. J. Hydrol. 519, 1171–1176 (2014). https://doi.org/10.1016/j.jhydrol.2014.08.046
Lin, Y.C.; Yang, S.Y.; Fen, C.S.; Der, Y.H.: A general analytical model for pumping tests in radial finite two-zone confined aquifers with Robin-type outer boundary. J. Hydrol. 540, 1162–1175 (2016). https://doi.org/10.1016/j.jhydrol.2016.07.028
El-Rawy, M.; Batelaan, O.; Buis, K.; Anibas, C.; Mohammed, G.; Zijl, W.; Salem, A.: Analytical and numerical groundwater flow solutions for the FEMME-modeling environment. Hydrology (2020). https://doi.org/10.3390/HYDROLOGY7020027
Li, X.; Wen, Z.; Zhu, Q.; Jakada, H.: A mobile-immobile model for reactive solute transport in a radial two-zone confined aquifer. J. Hydrol. 580, 124347 (2020). https://doi.org/10.1016/j.jhydrol.2019.124347
Liu, X.; Zhang, Q.; Cheng, T.: Accelerating contaminant transport simulation in MT3DMS Using JASMIN-based parallel computing. Water 12, 1480 (2020). https://doi.org/10.3390/w12051480
Spitz, K.; Moreno, J.: A Practical Guide to Groundwater and Solute Transport Modeling. Wiley, New York (1996)
Mieszkowski, R.: Diffusion of lead ions trough the Poznań Clay (Neogene) and through glacial clay. Geol. Q. 47, 111–118 (2003). https://doi.org/10.7306/gq.v47i1.7301
Pickens, J.F.; Grisak, G.E.: Scale-dependent dispersion in a stratified granular aquifer. Water Resour. Res. 17, 1191–1211 (1981). https://doi.org/10.1029/WR017i004p01191
Rabideau, A.; Khandelwal, A.: Nonequilibrium sorption in soil/bentonite barriers. J. Environ. .Eng 124, 329–335 (1998). https://doi.org/10.1061/(ASCE)0733-9372(1998)124:4(329)
Goyette, M.L.; Lewis, B.-A.G.: K d in screening-level ground-water contaminant-transport model. J. Environ. Eng. 121, 537–541 (1995). https://doi.org/10.1061/(ASCE)0733-9372(1995)121:7(537)
Maraqa, M.A.; Wallace, R.B.; Voice, T.C.: Effect of water saturation on retardation of ground-water contaminants. J. Environ. Eng. 125, 697–704 (1999). https://doi.org/10.1061/(ASCE)0733-9372(1999)125:8(697)
Connor, J.A.; Bowers, R.L.; Paquette, S.M.; Newell, C.J.: Soil attenuation model for derivation of risk-based soil remediation standards. Groundwater Services, Inc., Houston, Texas (1997)
Ganguly, C.; Matsumoto, M.R.; Rabideau, A.J.; Van, B.J.E.: Metal ion leaching from contaminated soils: model development. J. Environ. Eng. 124, 278–287 (1998). https://doi.org/10.1061/(ASCE)0733-9372(1998)124:3(278)
Ganguly, C.; Matsumoto, M.R.; Rabideau, A.J.; Van, B.J.E.: Metal ion leaching from contaminated soils: model calibration and application. J. Environ. .Eng. 124, 1150–1158 (1998). https://doi.org/10.1061/(ASCE)0733-9372(1998)124:12(1150)
Li, L.Y.; Wu, G.: Numerical simulation of transport of four heavy metals in kaolinite clay. J. Environ. Eng. 125, 314–324 (1999). https://doi.org/10.1061/(ASCE)0733-9372(1999)125:4(314)
De-Josselin-De-Jong, G.: Longitudinal and transverse diffusion in granular deposits. Trans. Am. Geophys. Union 39, 67 (1958). https://doi.org/10.1029/TR039i001p00067
Ogata, A.; Banks, R.B.: A solution of the differential equation of longitudinal dispersion in porous media. Geol Surv (US); Prof Pap A1–A7 (1961)
Sayre, W.W.: Dispersion of mass in open-channel flow. US Geological Survey. Open-File Report 67–192 (1967). https://doi.org/10.3133/ofr67192
Baetsle, L.H.: Migration of Radionuclides in porous media. In: Duhamel, A.M.F. (Ed.) Health Physics, pp. 707–730. Pergamon Press, Elmsford, New York (1969)
Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1972)
Domenico, P.A.: An analytical model for multidimensional transport of a decaying contaminant species. J. Hydrol. 91, 49–58 (1987). https://doi.org/10.1016/0022-1694(87)90127-2
Runkel, R.L.: Solution of the advection–dispersion equation: continuous load of finite duration. J. Environ. Eng. 122, 830–832 (1996). https://doi.org/10.1061/(ASCE)0733-9372(1996)122:9(830)
Hossain, M.A.; Yonge, D.R.: Linear finite-element modeling of contaminant transport in ground water. J. Environ. Eng. 123, 1126–1135 (1997). https://doi.org/10.1061/(asce)0733-9372(1997)123:11(1126)
Chen, J.S.; Ho, Y.C.; Liang, C.P.; Wang, S.W.; Liu, C.W.: Semi-analytical model for coupled multispecies advective–dispersive transport subject to rate-limited sorption. J. Hydrol. 579, 124164 (2019). https://doi.org/10.1016/j.jhydrol.2019.124164
Cunningham, J.A.; Mendoza-Sanchez, I.: Equivalence of two models for biodegradation during contaminant transport in groundwater. Water Resour. Res. 42, 1–10 (2006). https://doi.org/10.1029/2005WR004205
Zoghbi, C.; Basha, H.: Simple transport models for karst systems. J. Hydrol. 588, 125046 (2020). https://doi.org/10.1016/j.jhydrol.2020.125046
He, Z.; Wu, W.; Wang, S.S.Y.: Integrated two-dimensional surface and three-dimensional subsurface contaminant transport model considering soil erosion and sorption. J. Hydraul. Eng. 135, 1028–1040 (2009). https://doi.org/10.1061/(ASCE)HY.1943-7900.0000116
Paladino, O.; Moranda, A.; Massabò, M.; Robbins, G.A.: Analytical solutions of three-dimensional contaminant transport models with exponential source decay. Groundwater 56, 96–108 (2018). https://doi.org/10.1111/gwat.12564
Park, E.: Analytical modeling of contaminant transport and horizontal well hydraulics. Doctoral dissertation, Texas A&M University (2002). http://hdl.handle.net/1969.1/17
Hekmatzadeh, A.; Keshavarzi, H.; Talebbeydokhti, N.; Torabi Haghighi, A.: Lattice Boltzmann solution of advection-dominated mass transport problem: a comparison. Sci. Iran 27, 625–638 (2020). https://doi.org/10.24200/sci.2018.5616.1376
Schumer, R.; Benson, D.A.; Meerschaert, M.M.; Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39, 1–12 (2003). https://doi.org/10.1029/2003WR002141
Craig, J.R.; Heidlauf, T.: Coordinate mapping of analytical contaminant transport solutions to non-uniform flow fields. Adv. Water Resour. 32, 353–360 (2009). https://doi.org/10.1016/j.advwatres.2008.11.013
Deng, B.; Li, J.; Zhang, B.; Li, N.: Integral transform solution for solute transport in multi-layered porous media with the implicit treatment of the interface conditions and arbitrary boundary conditions. J. Hydrol. 517, 566–573 (2014). https://doi.org/10.1016/j.jhydrol.2014.05.072
Huang, C.-S.; Yang, S.-Y.; Yeh, H.-D.: Groundwater flow to a pumping well in a sloping fault zone unconfined aquifer. Water Resour. Res. 50, 4079–4094 (2014). https://doi.org/10.1002/2013WR014212
van Genuchten, M.T.; Alves, W.J.: Analytical solutions of the one-dimensional convective–dispersive solute transport equation. Tech Bull—United States Dep Agric (1982)
Gerke, H.H.; van Genuchten, M.T.: A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resour. Res. 29, 305–319 (1993). https://doi.org/10.1029/92WR02339
van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980). https://doi.org/10.2136/sssaj1980.03615995004400050002x
Savović, S.; Djordjevich, A.: Finite difference solution of the one-dimensional advection–diffusion equation with variable coefficients in semi-infinite media. Int. J. Heat Mass Transf. 55, 4291–4294 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.073
Bauer, P.; Attinger, S.; Kinzelbach, W.: Transport of a decay chain in homogenous porous media: analytical solutions. J. Contam. Hydrol. 49, 217–239 (2001). https://doi.org/10.1016/s0169-7722(00)00195-9
Singh, M.K.; Singh, V.P.; Das, P.: Mathematical modeling for solute transport in aquifer. J. Hydroinf. 18, 481–499 (2016). https://doi.org/10.2166/hydro.2015.034
Pan, C.; Changfu, W.: Numerical procedure for simulating the two-phase flow in unsaturated soils with hydraulic hysteresis. Int. J. Geomech. 16, 4015030 (2016). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000505
Guyonnet, D.; Côme, B.; Perrochet, P.; Parriaux, A.: Comparing two methods for addressing uncertainty in risk assessments. J. Environ. Eng. 125, 660–666 (1999). https://doi.org/10.1061/(ASCE)0733-9372(1999)125:7(660)
Assumaning, G.A.; Chang, S.-Y.: Application of sequential data-assimilation techniques in groundwater contaminant transport modeling. J. Environ. Eng. 142, 04015073 (2016). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001034
Chang, S.-Y.; Chowhan, T.; Latif, S.: State and parameter estimation with an SIR particle filter in a three-dimensional groundwater pollutant transport model. J. Environ. Eng. 138, 1114–1121 (2012). https://doi.org/10.1061/(asce)ee.1943-7870.0000584
Bandilla, K.W.; Rabideau, A.J.; Janković, I.: A parallel mesh-free contaminant transport model based on the analytic element and streamline methods. Adv. Water. Resour. 32, 1143–1153 (2009). https://doi.org/10.1016/j.advwatres.2008.08.009
Dhawan, S.; Bhowmik, S.K.; Kumar, S.: Galerkin-least square B-spline approach toward advection–diffusion equation. Appl. Math. Comput. 261, 128–140 (2015). https://doi.org/10.1016/j.amc.2015.03.092
Onyari, E.; Taigbenu, A.: Inverse Green element evaluation of source strength and concentration in groundwater contaminant transport. J. Hydroinf. 19, 81–96 (2017). https://doi.org/10.2166/hydro.2016.028
Jiao, J.; Zhang, Y.: Direct method of hydraulic conductivity structure identification for subsurface transport modeling. J. Hydrol. Eng. 21, 1–14 (2016). https://doi.org/10.1061/(ASCE)HE.1943-5584.0001410
Samad, M.S.A.; Varghese, G.K.; Alappat, B.J.: Fitness evaluation while using contaminant transport models for environmental forensic investigation. Energy Proc. 119, 792–800 (2017). https://doi.org/10.1016/j.egypro.2017.07.112
McDonald, M.G; Harbaugh, A.W: A modular three-dimensional finite-difference groundwater flow model. US Geological Survey. Open-File Report 83–875 (1984). https://doi.org/10.3133/ofr83875
McDonald, M.G; Harbaugh, A.W: A modular three-dimensional finite-difference groundwater flow model. US GPO. Techniques of Water-Resource Investigations 06-A1 (1988). https://doi.org/10.3133/twri06A1
Harbough, W.; Mcdonald, M.G.: Programmer ’s Documentation for MODFLOW-96 , an update to the U.S. Geological Survey Modular Finite-Difference Ground-Water Flow Model. Vol.Open-FileReport 96–485. US Geological Survey, Reston, Virginia (1996)
Menezes, G.B.; Inyang, H.I.: GIS-based contaminant transport model for heterogeneous hydrogeological settings. J. Environ. Inf. 14, 11–24 (2009). https://doi.org/10.3808/jei.200900149
Nevin, J.P.; Connor, J.A.; Newell, C.J.; Gustafson, J.B.; Lyons, K.A.: FATE 5: a natural attenuation calibration tool for groundwater fate and transport modeling. In: NGWA Petroleum Hydrocarbons Conference, Houston, TX (1997)
Peng, C.H.; Feng, S.J.; Zheng, Q.T.; Ding, X.H.; Chen, Z.L.; Chen, H.X.: A two-dimensional analytical solution for organic contaminant diffusion through a composite geomembrane cut-off wall and an aquifer. Comput. Geotech. 119, 103361 (2020). https://doi.org/10.1016/j.compgeo.2019.103361
Ding, X.H.; Feng, S.J.; Zheng, Q.T.; Peng, C.H.: A two-dimensional analytical model for organic contaminants transport in a transition layer-cutoff wall-aquifer system. Comput. Geotech. 128, 103816 (2020). https://doi.org/10.1016/j.compgeo.2020.103816
Zhang, Y.; LaBolle, E.; Reeves, D.M.; Russell, C.: Development of RWHet to Simulate Contaminant Transport in Fractured Porous Media. Nevada University, Reno (2012)
Ingham, J.; Dunn, I.J.; Heinzle, E.; Prenosil, J.E.: Chemical Engineering Dynamics: Modelling with PC Simulation. Wiley, New York (2008)
Moqbel, S.; Abu-El-Sha’r, W.: Modeling groundwater flow and solute transport at Azraq basin using Parflow and Slim-fast. Jordan J. Civ. Eng. 12, 263–278 (2018)
Bedaso, Z.K.; Wu, S.-Y.; Johnson, A.N.; McTighe, C.: Assessing groundwater sustainability under changing climate using isotopic tracers and climate modelling, southwest Ohio, USA. Hydrol. Sci. J. 64, 798–807 (2019). https://doi.org/10.1080/02626667.2019.1606429
Watson, A.; Eilers, A.; Miller, J.A.: Recharge estimation using CMB and environmental isotopes in the Verlorenvlei estuarine system, South Africa and implications for groundwater sustainability in a semi-arid agricultural region. Water 12, 1362 (2020). https://doi.org/10.3390/w12051362
He, X.; Feng, K.; Li, X.; Craft, A.B.; Wada, Y.; Burek, P.; Wood, E.F.; Sheffield, J.: Solar and wind energy enhances drought resilience and groundwater sustainability. Nat. Commun. 10, 4893 (2019). https://doi.org/10.1038/s41467-019-12810-5
Ahmed, K.; Shahid, S.; Demirel, M.C.; Nawaz, N.; Khan, N.: The changing characteristics of groundwater sustainability in Pakistan from 2002 to 2016. Hydrogeol. J. 27, 2485–2496 (2019). https://doi.org/10.1007/s10040-019-02023-x
Taylor, R.G.; Favreau, G.; Scanlon, B.R.; Villholth, K.G.: Topical Collection: determining groundwater sustainability from long-term piezometry in Sub-Saharan Africa. Hydrogeol. J. 27, 443–446 (2019). https://doi.org/10.1007/s10040-019-01946-9
Singh, A.P.; Bhakar, P.: Development of groundwater sustainability index: a case study of western arid region of Rajasthan, India. Environ. Dev. Sustain. (2020). https://doi.org/10.1007/s10668-020-00654-9
Mautner, M.R.L.; Foglia, L.; Herrera, G.S.; Galán, R.; Herman, J.D.: Urban growth and groundwater sustainability: evaluating spatially distributed recharge alternatives in the Mexico City Metropolitan Area. J. Hydrol. 586, 124909 (2020). https://doi.org/10.1016/j.jhydrol.2020.124909
Wang, S.; Liu, H.; Yu, Y.; Zhao, W.; Yang, Q.; Liu, J.: Evaluation of groundwater sustainability in the arid Hexi Corridor of Northwestern China, using GRACE, GLDAS and measured groundwater data products. Sci. Total Environ. 705, 135829 (2020). https://doi.org/10.1016/j.scitotenv.2019.135829
Freeze, R.A.; Cherry, J.A.; Cherry, J.A.: Groundwater. Prentice-Hall, Englewood Cliffs (1979)
Acknowledgements
The authors thankfully acknowledge the Deanship of Scientific Research, King Khalid University, Abha, Saudi Arabia, for funding the Project Grant No. R.G.P2/85/41. The support of King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia, is also acknowledged.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Hasan, M.A., Ahmad, S. & Mohammed, T. Groundwater Contamination by Hazardous Wastes. Arab J Sci Eng 46, 4191–4212 (2021). https://doi.org/10.1007/s13369-021-05452-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13369-021-05452-7