Skip to main content
Log in

Study of Sulfosuccinate and Extended Sulfated Sodium Surfactants on the Malaysian Crude/Water Properties for ASP Application in Limestone

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Among the successful methods in enhanced oil recovery (EOR) is the chemical EOR. The surfactant-based chemical techniques are highly recommended. However, some drawbacks remained unsolved such as surfactant selection and application in the reservoirs. Surfactants are particularly applied in sandstone reservoirs, so paving the path to expand the implementation to limestone reservoirs is required. Recently, alkaline surfactant polymer (ASP) was suggested for limestone reservoirs in Malaysia. However, limited studies discussed the effect of surfactant screening on the process. Thus, this study investigates the influence of sulfosuccinate and extended sulfated sodium surfactants in improving ASP performance. The evaluation considered the interfacial tension, wettability and recovery factor. The approach used was two-stage experiments of surfactant analysis and ASP core flooding. The first step used the drop Kruss spinning drop tensiometer, and data physics equipment drop shape analyzer to analyze the IFT and the contact angle. The second stage included the limestone sandpack preparation and characterization, followed by ASP flooding. The results showed that single surfactant has low IFT between 0.005 and 0.05 mN/m, while significantly, the synergy of surfactant mixtures has ultra-low IFT of 0.0006–0.001 mN/m. The contact angle results showed a drastic alteration of 65–81% reduction. The cationic surfactants achieved complete water-wet on limestone. The sandpack preparation confirmed acceptable uniformity by the histogram identification. The oil recovery proved additional recovery between 22 and 40%. The results of this research are a step forward to attain the technical feasibility of ASP in limestone reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

PV:

Pore volume

Sor1:

Residual oil saturation after brine injection

Sor2:

Residual oil saturation after ASP for EOR

ASP:

Alkaline surfactant polymer

IFT:

Interfacial tension

OOIP:

Originally oil in place

IOIP:

Initial oil in place

EOR:

Enhance oil recovery

CEOR:

Chemical enhance oil recovery

References

  1. Lu, Q.; Li, Y.; Chai, J.; Wang, S.: Crude oil price analysis and forecasting: a perspective of “new triangle”. Energy Econ. 87, 104721 (2020)

    Article  Google Scholar 

  2. Babadagli, T.: Philosophy of EOR. J. Petrol. Sci. Eng. 188, 106930 (2020)

    Article  Google Scholar 

  3. Abbas, A.H.; Moslemizadeh, A.; Sulaiman, W.R.W.; Jaafar, M.Z.; Agi, A.: An insight into a di-chain surfactant adsorption onto sandstone minerals under different salinity-temperature conditions: chemical EOR applications. Chem. Eng. Res. Des. 153, 657–665 (2019)

    Article  Google Scholar 

  4. Pucciariello, R.; Villani, V.; Bonini, C.; D’Auria, M.; Vetere, T.: Physical properties of straw lignin-based polymer blends. Polymer 45(12), 4159–4169 (2004)

    Article  Google Scholar 

  5. Modern Chemical EOR Book-Sheng(1).pdf.

  6. Sheng, J.J.: Status of surfactant EOR technology. Petroleum 1(2), 97–105 (2015). https://doi.org/10.1016/j.petlm.2015.07.003

    Article  Google Scholar 

  7. Sheng, J.J.: Formation damage in chemical enhanced oil recovery processes. Asia-Pac. J. Chem. Eng. 11(6), 826–835 (2016)

    Article  Google Scholar 

  8. Liu, S.; Zhang, D.; Yan, W.; Puerto, M.; Hirasaki, G.J.; Miller, C.A.: Favorable attributes of alkaline-surfactant-polymer flooding. SPE J. 13(01), 5–16 (2008)

    Article  Google Scholar 

  9. Pratap, M.; Gauma, M.: Field implementation of alkaline-surfactant-polymer (ASP) flooding: a maiden effort in India. In: SPE Asia Pacific Oil and Gas Conference and Exhibition. Society of Petroleum Engineers (2004)

  10. Sheng, J.J.: Investigation of alkaline–crude oil reaction. Petroleum 1, 31–39 (2015)

    Article  Google Scholar 

  11. Tumba, J.; Agi, A.; Gbadamosi, A.; Junin, R.; Abbas, A.; Rajaei, K.; Gbonhinbor, J.: Lignin as a potential additive for minimizing surfactant adsorption on clay minerals in different electrolyte concentration. In: SPE Nigeria Annual International Conference and Exhibition. Society of Petroleum Engineers (2019)

  12. Al-Shakry, B.; Shiran, B.S.; Skauge, T.; Skauge, A.: Enhanced oil recovery by polymer flooding: optimizing polymer injectivity. In: SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition. Society of Petroleum Engineers (2018)

  13. Wang, C.; Wang, B.; Cao, X.; Li, H.: Application and design of alkaline-surfactant-polymer system to close well spacing pilot Gudong oilfield. In: SPE Western Regional Meeting. Society of Petroleum Engineers (1997)

  14. Demin, W.; Zhenhua, Z.; Jiecheng, C.; Jingchun, Y.; Shutang, G.; Li, L.: Pilot test of alkaline surfactant polymer flooding in Daqing oil field. SPE Reserv. Eng. 12(04), 229–233 (1997)

    Article  Google Scholar 

  15. Abdullah, M.; Tiwari, S.; Pathak, A.: Evolution of chemical EOR (ASP) program for a carbonate reservoir in North Kuwait. In: SPE Middle East Oil and Gas Show and Conference. Society of Petroleum Engineers (2015)

  16. Pei, H.; Zhang, G.; Ge, J.; Jin, L.; Ma, C.: Potential of alkaline flooding to enhance heavy oil recovery through water-in-oil emulsification. Fuel 104, 284–293 (2013)

    Article  Google Scholar 

  17. Al-Murayri, M.T.; Kamal, D.S.; Suniga, P.; Fortenberry, R.; Britton, C.; Pope, G.A.; Liyanage, P.J.; Jang, S.H.; Upamali, K.A.: Improving ASP performance in carbonate reservoir rocks using hybrid-alkali. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2017)

  18. Dang, C.T.Q.; Nguyen, N.T.B.; Chen, Z.; Nguyen, H.X.; Bae, W.; Phung, T.H.: A comprehensive evaluation of the performances of alkaline/surfactant/polymer flooding in conventional and unconventional reservoirs. In: SPE Asia pacific Oil and Gas Conference and Exhibition. Society of Petroleum Engineers (2012)

  19. Amirianshoja, T.; Junin, R.; Idris, A.K.; Rahmani, O.: A comparative study of surfactant adsorption by clay minerals. J. Petrol. Sci. Eng. 101, 21–27 (2013)

    Article  Google Scholar 

  20. Muherei, M.A.; Junin, R.: Equilibrium adsorption isotherms of anionic, nonionic surfactants and their mixtures to shale and sandstone. Mod. Appl. Sci. 3(2), 158 (2009). https://doi.org/10.5539/mas.v3n2p158

    Article  Google Scholar 

  21. Gao, B.; Sharma, M.M.: A new family of anionic surfactants for EOR applications. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2012)

  22. Al-Sahhaf, T.; Suttar Ahmed, A.; Elkamel, A.: Producing ultralow interfacial tension at the oil/water interface. Pet. Sci. Technol. 20(7–8), 773–788 (2007). https://doi.org/10.1081/lft-120003712

    Article  Google Scholar 

  23. Anton, R.; Mosquera, F.; Oduber, M.: Anionic-nonionic surfactant mixture to attain emulsion insensitivity to temperature. In: Trends in Colloid and Interface Science IX, pp. 85–88. Springer (1995)

  24. Bardhan, S.; Kundu, K.; Saha, S.K.; Paul, B.K.: Physicochemical studies of mixed surfactant microemulsions with isopropyl myristate as oil. J. Colloid Interface Sci. 402, 180–189 (2013)

    Article  Google Scholar 

  25. Bera, A.; Mandal, A.: Microemulsions: a novel approach to enhanced oil recovery: a review. J. Petrol. Explor. Prod. Technol. 5(3), 255–268 (2015). https://doi.org/10.1007/s13202-014-0139-5

    Article  Google Scholar 

  26. Strey, R.: Phase behavior and interfacial curvature in water–oil–surfactant systems. Curr. Opin. Colloid Interface Sci. 1(3), 402–410 (1996)

    Article  Google Scholar 

  27. Dong, R.; Hao, J.: Complex fluids of poly (oxyethylene) monoalkyl ether nonionic surfactants. Chem. Rev. 110(9), 4978–5022 (2010)

    Article  Google Scholar 

  28. Wolf, L.; Hoffmann, H.; Talmon, Y.; Teshigawara, T.; Watanabe, K.: Cryo-TEM imaging of a novel microemulsion system of silicone oil with an anionic/nonionic surfactant mixture. Soft Matter 6(21), 5367–5374 (2010)

    Article  Google Scholar 

  29. <clay review.pdf > .

  30. Kamal, M.S.; Hussein, I.A.; Sultan, A.S.: Review on surfactant flooding: phase behavior, retention, IFT, and field applications. Energy Fuels 31(8), 7701–7720 (2017)

    Article  Google Scholar 

  31. McCool, S.; Ballard, M.; Willhite, P.; Walton, T.; Song, K.: Field Demonstration of Chemical Flooding of the Trembley Oilfield. Reno County, Kansas (2016)

    Google Scholar 

  32. Hernandez, C.; Chacon, L.J.; Lorenzo, A.; Baldonedo, A.; Jie, Q.; Dowling, P.C.; Pitts, M.J.: ASP system design for an offshore application in the La Salina Field, Lake Maracaibo. In: SPE Latin American and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers (2001)

  33. Abbas, A.H.; Sulaiman, W.R.W.; Jaafar, M.Z.; Aja, A.A.: Micelle formation of aerosol-OT surfactants in sea water salinity. Arab. J. Sci. Eng. 43, 2515–2519 (2017). https://doi.org/10.1007/s13369-017-2593-0

    Article  Google Scholar 

  34. Austad, T.; Strand, S.; Høgnesen, E.; Zhang, P.: Seawater as IOR fluid in fractured chalk. In: SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers (2005)

  35. Abbas, A.H.; Sulaiman, W.R.W.; Jaafar, M.Z.; Agi, A.A.: Laboratory experiment based permeability reduction estimation for enhanced oil recovery. J. Eng. Sci. Technol. 13(8), 2464–2480 (2018)

    Google Scholar 

  36. Abbas, A.H.; Augustine, A.; Wan, R.W.S.; Bathaee, M.: Study of surfactant flooding in enrich swelling mineral content. Int. J. Adv. Sci. Technol. 29(1), 57–68 (2020)

    Google Scholar 

  37. Nagarajan, R.: Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir 18(1), 31–38 (2002)

    Article  Google Scholar 

  38. Xu, Z.; Li, P.; Qiao, W.; Li, Z.; Cheng, L.: Effect of aromatic ring in the alkyl chain on surface properties of arylalkyl surfactant solutions. J. Surfactants Deterg. 9(3), 245–248 (2006)

    Article  Google Scholar 

  39. Xu, Z.; Shaw, A.; Qiao, W.; Li, Z.: Branched chains of arylalkyl surfactants effects on the interfacial tension between crude Oil/Surfactant-alkaline systems. Energy Sources Part A Recov. Util. Environ. Eff. 34(18), 1723–1730 (2012)

    Article  Google Scholar 

  40. Memon, M.K.; Elraies, K.A.; Shuker, M.T.: Research article effects of surfactant blend formulation on crude oil-brine interaction and wettability: an experimental study. Res. J. Appl. Sci. Eng. Technol. 12(5), 537–543 (2016)

    Article  Google Scholar 

  41. Liu, Z.-Y.; Li, Z.-Q.; Song, X.-W.; Zhang, J.-C.; Zhang, L.; Zhang, L.; Zhao, S.: Dynamic interfacial tensions of binary nonionic–anionic and nonionic surfactant mixtures at water–alkane interfaces. Fuel 135, 91–98 (2014)

    Article  Google Scholar 

  42. Karambeigi, M.S.; Nasiri, M.; Asl, A.H.; Emadi, M.A.: Enhanced oil recovery in high temperature carbonates using microemulsions formulated with a new hydrophobic component. J. Ind. Eng. Chem. 39, 136–148 (2016)

    Article  Google Scholar 

  43. Gao, Y.A.; Li, N.; Zheng, L.; Bai, X.; Yu, L.; Zhao, X.; Zhang, J.; Zhao, M.; Li, Z.: Role of solubilized water in the reverse ionic liquid microemulsion of 1-butyl-3-methylimidazolium tetrafluoroborate/TX-100/benzene. J. Phys. Chem. B 111(10), 2506–2513 (2007)

    Article  Google Scholar 

  44. He, Z.-Q.; Zhang, M.-J.; Fang, Y.; Jin, G.-Y.; Chen, J.: Extended surfactants: a well-designed spacer to improve interfacial performance through a gradual polarity transition. Colloids Surf. A 450, 83–92 (2014)

    Article  Google Scholar 

  45. Jarrahian, K.; Seiedi, O.; Sheykhan, M.; Sefti, M.V.; Ayatollahi, S.: Wettability alteration of carbonate rocks by surfactants: a mechanistic study. Colloids Surf. A 410, 1–10 (2012)

    Article  Google Scholar 

  46. Nwidee, L.N.; Lebedev, M.; Barifcani, A.; Sarmadivaleh, M.; Iglauer, S.: Wettability alteration of oil-wet limestone using surfactant-nanoparticle formulation. J. Colloid Interface Sci. 504, 334–345 (2017)

    Article  Google Scholar 

  47. Aghaeifar, Z.; Strand, S.; Austad, T.; Puntervold, T.; Aksulu, H.; Navratil, K.; Storås, S.; Håmsø, D.: Influence of formation water salinity/composition on the low-salinity enhanced oil recovery effect in high-temperature sandstone reservoirs. Energy Fuels 29(8), 4747–4754 (2015). https://doi.org/10.1021/acs.energyfuels.5b01621

    Article  Google Scholar 

  48. Mofrad, S.K.; Dehaghani, A.H.S.: An experimental investigation into enhancing oil recovery using smart water combined with anionic and cationic surfactants in carbonate reservoir. Energy Rep. 6, 543–549 (2020)

    Article  Google Scholar 

  49. Al Harrasi, A.; Al-Maamari, R.S.; Masalmeh, S.K.: Laboratory investigation of low salinity waterflooding for carbonate reservoirs. In: Abu Dhabi International Petroleum Conference and Exhibition. Society of Petroleum Engineers (2012)

  50. Arya, A.: Dispersion and Reservoir Heterogeneity Ph. D. Dissertation, University of Texas, Austin (1986)

  51. Aitkulov, A.; Mohanty, K.K.: Investigation of alkaline-surfactant-polymer flooding in a quarter five-spot sandpack for viscous oil recovery. J. Petrol. Sci. Eng. 175, 706–718 (2019)

    Article  Google Scholar 

  52. Abbas, A.; Wan Sulaiman, W.; Zaidi, J.; Agi, A.: Anionic surfactant adsorption: insight for enhanced oil recovery. Recent. Adv. Petrochem. Sci. 1(5), 1–4 (2017)

    Google Scholar 

  53. Dimov, N.K.; Kolev, V.L.; Kralchevsky, P.A.; Lyutov, L.G.; Broze, G.; Mehreteab, A.: Adsorption of ionic surfactants on solid particles determined by zeta-potential measurements: competitive binding of counterions. J. Colloid Interface Sci. 256(1), 23–32 (2002). https://doi.org/10.1006/jcis.2001.7821

    Article  Google Scholar 

  54. Saha, R.; Uppaluri, R.V.; Tiwari, P.: Effect of mineralogy on the adsorption characteristics of surfactant–reservoir rock system. Colloids Surf. A: Physicochem. Eng. Asp. 531, 121–132 (2017)

    Article  Google Scholar 

  55. Le Van, S.; Chon, B.H.: Chemical flooding in heavy-oil reservoirs: from technical investigation to optimization using response surface methodology. Energies 9(9), 711 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Huntsman EOR USA, for providing the surfactants. The authors are grateful to the financial support provided by the Ministry of Higher Education Malaysia grant reference vote number: 4C195.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Noman Khan.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 834 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.N., Wan Sulaiman, W.R. & Abbas, A.H. Study of Sulfosuccinate and Extended Sulfated Sodium Surfactants on the Malaysian Crude/Water Properties for ASP Application in Limestone. Arab J Sci Eng 46, 6915–6924 (2021). https://doi.org/10.1007/s13369-020-05252-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05252-5

Keywords

Navigation