Skip to main content
Log in

Exome Sequencing Analysis of Familial Cases of Multiple Sclerosis and a Monozygotic Discordant Twin

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease, which leads to neurodegenerative processes that cause neuron demyelination. MS is multifactorial with uncertain etiology, where interactions between genetic makeup of an individual and environmental factors influence disease risk. More than 200 risk variants have been implicated in MS, each contributed to understanding the etiology of MS through providing meaningful clues of the functional mechanisms underlying the development of this disease. This study aimed to identify genetic variants associated with MS in the Jordanian population. We performed whole exome sequencing for eight pairs of related patients from eight different families including one pair of discordant monozygotic twins, to determine the shared genetic information and genetic variants, and their correlation to MS. We identified rare exonic missense and frame shift variants segregating in all patients in MUC6, MUC16, and MUC19 genes, which are involved in innate immunity, in addition to ZNF717 gene. Moreover, variants in two of the previously described MS genes (HLA-DRB1, HLA- DRQ1) were also segregating in most patients. These molecular genetic details require further validation and functional analysis, to be implicated in the clinical diagnosis process of MS. This is the first attempt to characterize the genetic factors associated with MS in the Jordanian population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wallin, M.T.; Culpepper, W.J.; Nichols, E.; Bhutta, Z.A.; Gebrehiwot, T.T., et al.: Global, regional, and national burden of multiple sclerosis 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol 18(5), 269–285 (2019). https://doi.org/10.1016/S1474-4422(18)30499-X

    Article  Google Scholar 

  2. Grzegorski, T.; Losy, J.: Multiple sclerosis—the remarkable story of a baffling disease. Rev Neurosci 30(5), 511–526 (2019). https://doi.org/10.1515/revneuro-2018-0074

    Article  Google Scholar 

  3. Macaron, G.; Feng, J.; Moodley, M.; Rensel, M.: Newer treatment approaches in pediatric-onset multiple sclerosis. Curr Treat Options Neurol. 21(10), 50 (2019). https://doi.org/10.1007/s11940-019-0592-z

    Article  Google Scholar 

  4. Vaughn, C.B.; Jakimovski, D.; Kavak, K.S.; Ramanathan, M.; Benedict, R.H.B.; Zivadinov, R.; Weinstock-Guttman, B.: Epidemiology and treatment of multiple sclerosis in elderly populations. Nat Rev Neurol 15(6), 329–342 (2019). https://doi.org/10.1038/s41582-019-0183-3

    Article  Google Scholar 

  5. Yeung, M.S.Y.; Djelloul, M.; Steiner, E.; Bernard, S.; Salehpour, M.; Possnert, G.; Brundin, L.; Frisén, J.: Dynamics of oligodendrocyte generation in multiple sclerosis. Nature 566(7745), 538–542 (2019). https://doi.org/10.1038/s41586-018-0842-3

    Article  Google Scholar 

  6. Madireddy, L.; Patsopoulos, N.A.; Cotsapas, C.; Bos, S.D.; Beecham, A., et al.: A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis. Nat Commun 10(1), 2236 (2019). https://doi.org/10.1038/s41467-019-09773-y

    Article  Google Scholar 

  7. Harirchian, M.H.; Fatehi, F.; Sarraf, P.; Honarvar, N.M.; Bitarafan, S.: Worldwide prevalence of familial multiple sclerosis: a systematic review and meta-analysis. Multiple Scler Relat Disord 20, 43–47 (2017). https://doi.org/10.1016/j.msard.2017.12.015

    Article  Google Scholar 

  8. Jackson, K.C.; Sun, K.; Barbour, C.; Hernandez, D.; Kosa, P.; Tanigawa, M.; Weideman, A.M.; Bielekova, B.: Genetic model of MS severity predicts future accumulation of disability. Ann Hum Genet 84(1), 1–10 (2020). https://doi.org/10.1111/ahg.12342

    Article  Google Scholar 

  9. Vidmar, L.; Maver, A.; Drulović, J.; Sepčić, J.; Novaković, I.; Ristič, S.; Šega, S.; Peterlin, B.: Multiple Sclerosis patients carry an increased burden of exceedingly rare genetic variants in the inflammasome regulatory genes. Sci Rep 9(1), 9171 (2019). https://doi.org/10.1038/s41598-019-45598-x

    Article  Google Scholar 

  10. Vilariño-Güell, C.; Zimprich, A.; Martinelli-Boneschi, F.; Herculano, B.; Wang, Z., et al.: Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease. PLoS Genet 15(6), e1008180 (2019). https://doi.org/10.1371/journal.pgen.1008180

    Article  Google Scholar 

  11. Ziliotto, N.; Marchetti, G.; Scapoli, C.; Bovolenta, M.; Meneghetti, S., et al.: C6orf10 low-frequency and rare variants in Italian multiple sclerosis patients. Front Genet 10, 573 (2019). https://doi.org/10.3389/fgene.2019.00573

    Article  Google Scholar 

  12. Shepard, C.J.; Cline, S.G.; Hinds, D.; Jahanbakhsh, S.; Prokop, J.W.: Breakdown of multiple sclerosis genetics to identify an integrated disease network and potential variant mechanisms. Physiol Genom 51(11), 562–577 (2019). https://doi.org/10.1152/physiolgenomics.00120.2018

    Article  Google Scholar 

  13. McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F.: The ensembl variant effect predictor. Genome Biol 17(1), 122 (2016). https://doi.org/10.1186/s13059-016-0974-4

    Article  Google Scholar 

  14. Kamal, S.; Kerndt, C.C.; Lappin, S.L.: Genetics, histocompatibility antigen. StatPearls Publishing, Treasure Island (2020)

    Google Scholar 

  15. Cavallo, S.: Immune-mediated genesis of multiple sclerosis. J Transl Autoimmun 3, 100039 (2020). https://doi.org/10.1016/j.jtauto.2020.100039

    Article  Google Scholar 

  16. Lysandropoulos, A.P.; Perrotta, G.; Billiet, T., et al.: Human leukocyte antigen genotype as a marker of multiple sclerosis prognosis. Can J Neurol Sci 47(2), 189–196 (2020). https://doi.org/10.1017/cjn.2019.329

    Article  Google Scholar 

  17. De Silvestri, A.; Capittini, C.; Mallucci, G., et al.: The involvement of HLA class II alleles in multiple sclerosis: a systematic review with meta-analysis. Dis Markers 2019, 1409069 (2019). https://doi.org/10.1155/2019/1409069

    Article  Google Scholar 

  18. Wysocki, T.; Olesińska, M.; Paradowska-Gorycka, A.: Current understanding of an emerging role of HLA-DRB1 gene in rheumatoid arthritis-from research to clinical practice. Cells 9(5), 1127 (2020). https://doi.org/10.3390/cells9051127

    Article  Google Scholar 

  19. Xu, H.; Yin, J.: HLA risk alleles and gut microbiome in ankylosing spondylitis and rheumatoid arthritis. Best Pract Res Clin Rheumatol 33(6), 101499 (2019). https://doi.org/10.1016/j.berh.2020.101499

    Article  Google Scholar 

  20. Bhatia, R.; Gautam, S.K.; Cannon, A., et al.: Cancer-associated mucins: role in immune modulation and metastasis. Cancer Metastasis Rev 38(1–2), 223–236 (2019). https://doi.org/10.1007/s10555-018-09775-0

    Article  Google Scholar 

  21. Gorlov, I.P.; Gorlova, O.Y.; Amos, C.I.: Untouchable genes in the human genome: identifying ideal targets for cancer treatment. Cancer Genet 231–232, 67–79 (2019). https://doi.org/10.1016/j.cancergen.2019.01.005

    Article  Google Scholar 

  22. Wang, H.; Yan, C.; Ye, H.: Overexpression of MUC16 predicts favourable prognosis in MUC16-mutant cervical cancer related to immune response. Exp Ther Med 20(2), 1725–1733 (2020). https://doi.org/10.3892/etm.2020.8836

    Article  Google Scholar 

  23. Li, G.; Lu, P.; Song, H.; Zheng, Q.; Nan, K.: Expression of mucins MUC5AC and MUC19 on the ocular surface in dry eye syndrome model of ovariectomized female rabbits. Adv Clin Exp Med 28(2), 165–169 (2019). https://doi.org/10.17219/acem/78021

    Article  Google Scholar 

  24. Coulombe, P.; Nassar, J.; Peiffer, I., et al.: The ORC ubiquitin ligase OBI1 promotes DNA replication origin firing. Nat Commun 10(1), 2426 (2019). https://doi.org/10.1038/s41467-019-10321-x

    Article  Google Scholar 

  25. Querques, F.; D’Agostino, A.; Cozzolino, C., et al.: Identification of a novel transcription factor required for osteogenic differentiation of mesenchymal stem cells. Stem Cells Dev 28(6), 370–383 (2019). https://doi.org/10.1089/scd.2018.0152

    Article  Google Scholar 

  26. Diao, H.; Zhu, P.; Dai, Y.; Chen, W.: Identification of 11 potentially relevant gene variants involved in growth retardation, intellectual disability, joint contracture, and hepatopathy. Medicine (Baltimore) 97(46), e13117 (2018). https://doi.org/10.1097/MD.0000000000013117

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank participants of this study. This work was supported by the Deanship of Research at Jordan University of Science and Technology, Grant No. 565/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asem M. Alkhateeb.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkhateeb, A.M., Salman, D.S. & Al-Hayk, K.A. Exome Sequencing Analysis of Familial Cases of Multiple Sclerosis and a Monozygotic Discordant Twin. Arab J Sci Eng 46, 5421–5427 (2021). https://doi.org/10.1007/s13369-020-05242-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05242-7

Keywords

Navigation