Skip to main content
Log in

Biological Control of Fusarium Wilt Disease of Tomato Plants Using Seaweed Extracts

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present research was conducted to evaluate the marine algal extracts effectiveness on tomato Fusarium wilt disease. The organic extracts of macroalgae exhibited antagonistic activity against Fusarium oxysporum. The highest antifungal activity obtained from the methanolic extract of Cystoseira myrica followed by methanol extract of Sargassum cinereum. GC–mass analysis of some seaweed extracts was used to identify the presence of main compounds as dimethylocta-1,6-dien-3-ol,1-methoxy-4-(2-propenyl), hexadecanoic acid, methyl ester, and octadecanoic acid, and methyl ester. The infection of tomato plants with F. oxysporum induced a significant decrease in shoot and root dry weights as well as the photosynthetic pigments. There was a marked increase in soluble contents of saccharides and protein for infected tomato plant shoots and roots. On the other hand, pathogenicity stress induced a significant decrease in total contents of saccharides and protein of tomato shoots and roots. The results indicated a significant increase in total free amino acid content and antioxidant enzymes (CAT, POD, and APX) activities of inoculated tomato shoots and roots. The plant fresh and dry weights increased significantly by increasing its pigments content as a result of marine algal extracts application. On the other hand, algal extracts pretreatment decreased soluble saccharides and protein contents of plants, whereas increased significantly amino acid content in shoots of the inoculated plants. The increase in the activity of antioxidant enzymes played an essential role in increasing plant resistance against F. oxysporum. Finally, the marine macroalgae could serve as a new bioagent source for biological control of soil fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Recep, K.; Fikrettin, S.; Erkol, D.; Cafer, E.: Biological control of the potato dry rot caused by Fusarium species using PGPR strains. Biol. Control 50, 194–198 (2009)

    Article  Google Scholar 

  2. El-Sheekh, M.M.; Khairy, H.M.; El-Shenody, R.A.: Allelopathic effects of the cyanobacterium Microcystis aeruginosa on the growth and photosynthetic pigments of some algal species. Allelopathy J. 26(2), 275–290 (2010)

    Google Scholar 

  3. Skulberg, O.M.: Microalgal as a source of bioactive molecules—experience from cyanophyte research. Appl. Phycol. 12, 341–348 (2000)

    Article  Google Scholar 

  4. Boobathy, S.; Soundarapandian, P.; Prithivraj, M.; Gunasundari, V.: Biochemical characterization of protein isolated from seaweed, Gracilaria edulis. Curr. Res. Biol. Sci. 2(1), 35–37 (2010)

    Google Scholar 

  5. Ismail, M.; El-Sheekh, M.: Enhancement of biochemical and nutritional contents of some cultivated seaweeds under laboratory conditions. J. Diet. Suppl. 15(3), 318–329 (2018)

    Article  Google Scholar 

  6. El Shafay, S.M.; Ali, S.S.; El-Sheekh, M.: Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria. Egypt. J. Aquat. Res. 42(1), 65–74 (2016)

    Article  Google Scholar 

  7. Gheda, S.; El-Sheekh, M.; Abou-Zeid, A.: In vitro anticancer activity of polysaccharide extracted from red alga Jania rubens against breast and colon cancer cell lines. Asian Pac. J. Trop. Med. 11(10), 583–589 (2018)

    Article  Google Scholar 

  8. Rajasulochan, P.; Dhamotharan, R.; Krishnamoorthy, P.; Murugesan, S.: Antibacterial activity of the extracts of marine red and brown algae. Am. Sci. 5(3), 20–25 (2009)

    Google Scholar 

  9. Brimner, T.A.; Boland, G.J.: A review of the non-target effects of fungi used to biologically control plant diseases. Agric. Ecosyst. Environ. 100, 3–16 (2003)

    Article  Google Scholar 

  10. Wang, Z.Y.; Li, D.B.: Study on Fusarium oxysporum pathogenesis vegetative compatible group. Zhejiang Agric. (in Chin.) 13(1), 72 (2001)

    Google Scholar 

  11. Morkuna, I.; Bednarski, W.; Kopyr, M.: Defense strategies of pea embryo axes with different levels of sucrose to Fusarium oxysporum and Ascochyta pisi. Physiol. Mol. Plant Pathol. 72, 167–178 (2008)

    Article  Google Scholar 

  12. Dubey, S.C.; Suresh, M.; Singh, B.: Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt. Biol. Control 40, 118–127 (2007)

    Article  Google Scholar 

  13. Dekker, J.: Acquired resistance to fungicides. Annu. Rev. Phytopathol. 14, 405–428 (1976)

    Article  Google Scholar 

  14. Wongpia, A.; Lomthaisong, K.: Changes in the 2DE protein profiles of chilli pepper (Capsicum annuum) leaves in response to Fusarium oxysporum infection. Sci. Asia 36, 259–270 (2010)

    Article  Google Scholar 

  15. Nagar, D.; Kumar, N.; Debbarama, R.; Reshma, V.S.: Investigation on the biochemical basis of resistance to Fusarium wilt in newly synthesized banana hybrids. Int. Q. J. Environ. Sci. IX, 593–596 (2016)

    Google Scholar 

  16. Venkatesh, K.V.; Kumar, K.G.; Pradeepa, K.; Kumar, S.R.; Kumar, R.S.: Biochemical markers assisted screening of Fusarium wilt resistant Musa paradisiaca (L.) cv. puttabale micropropagated clones. Ind. J. Exp. Biol. 51(7), 531–542 (2013)

    Google Scholar 

  17. Sangha, J.S.; Ravichandran, S.; Prithiviraj, K.; Critchley, A.T.; Prithiviraj, B.: Sulfated macroalgal polysaccharides l-carrageenan and i-carrageenan differentially alter Arabidopsis thaliana resistance to Sclerotinia sclerotiorum. Physiol. Mol. Plant Pathol. 75, 38–45 (2010)

    Article  Google Scholar 

  18. Patra, J.K.; Rath, S.K.; Jena, K.; Rathod, V.K.; Thatoi, H.: Evaluation of antioxidant and antimicrobial activity of seaweed (Sargassum sp.) extract, a study on inhibition of glutathione-S-Transferase activity. Turk. J. Biol. 32, 119–125 (2008)

    Google Scholar 

  19. El-Masry, H.A.; Fahmy, H.H.; Abdelwahed, A.S.H.: Synthesis and antimicrobial activity of some new benzimidazole derivatives. Molecules 5, 1429–1438 (2000)

    Article  Google Scholar 

  20. Liu, S.; Ruan, W.; Li, J.; Xu, H.; Wang, J.; Gao, Y.; Wang, J.: Biological control of phytopathogenic fungi by fatty acids. Mycopathologia 166(2), 93–102 (2008)

    Article  Google Scholar 

  21. Russell, A.D.; Hugo, W.B.; Ayliffe, G.A.J.: Principles and Practice of Disinfection, Preservation and Sterilization, p. 653. Blackwell, Boston (1982)

    Google Scholar 

  22. Metzner, H.; Rau, H.; Senger, H.: To synchronsiser bakeit investigations of individual pigment-deficiency mutants of Chlorella. Planta 65, 186–194 (1965)

    Article  Google Scholar 

  23. Badour, S.S.A.: Analytically chemical investigation of the kaliummangles in Chlorella in comparison with other mangelezustanden. Ph.D. Dissertation, Goettingen, pp. 1–199 (1959)

  24. Lowery, O.H.; Rasebrough, N.J.; Farr, A.L.; Randall, R.J.: Protein measurement with the Folin phenol reagent. Biol. Chem. 193, 291–297 (1951)

    Google Scholar 

  25. Moore, S.; Stein, W.W.: Amino acid free photometric ninhydrin method for use in the chromatography of amino acids. J. Biol. Chem. 176, 367–388 (1948)

    Google Scholar 

  26. Mukherjee, S.P.; Choudhuri, M.A.: Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Plant Physiol. 58, 166–170 (1983)

    Article  Google Scholar 

  27. Aebi, H.: Catalase in vitro. Methods Enzymol. 105, 121–126 (1984)

    Article  Google Scholar 

  28. Havir, E.A.; Mellate, N.A.: Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol. 84, 450–455 (1987)

    Article  Google Scholar 

  29. Klapheck, S.; Zimmer, I.; Cosse, H.: Scavenging of hydrogen peroxide in endosperm of Ricinus communis by ascorbate peroxidase. Plant Cell Physiol. 31, 1005–1013 (1990)

    Google Scholar 

  30. Asada, K.; Chen, G.: On activation of ascorbate peroxidase by thiols requires hydrogen peroxide. Plant Cell Physiol. 33, 117–123 (1992)

    Google Scholar 

  31. Kolanjinathan, K.; Stella, D.: Antibacterial activity of marine macro algae against human pathogens. Recent Res. Sci. Technol. 1(1), 20–22 (2009)

    Google Scholar 

  32. Omar, H.H.; Gumgumji, N.M.; Shiek, H.M.; El-Kazan, M.M.; El-Gendy, A.M.: Inhibition of the development of pathogenic fungi by extracts of some marine algae from the Red Sea of Jeddah, Saudi Arabia. Afr. J. Biotechnol. 11(72), 13697–13704 (2012)

    Google Scholar 

  33. Soliman, ASh; Ahmed, A.Y.; Abdel-Ghafour, S.E.; El-Sheekh, M.M.; Sobhy, H.M.: Antifungal bio-efficacy of the red algae Gracilaria confervoides extracts against three pathogenic fungi of cucumber plant. Middle East J. Appl. Sci. 8(3), 727–735 (2018)

    Google Scholar 

  34. Dikmen, M.; Ozturk, N.; Ozturk, Y.: The antioxidant potency of Punica granatum L. fruit peel reduces cell proliferation and induces apoptosis on breast cancer. J. Med. Foods 14, 1638–1646 (2011)

    Article  Google Scholar 

  35. Ceballos, R.; Cofré, X.; Quiroz, A.; Espinoza, N.; Cofré, X.: Bentazon-MCPA effect on Fusarium oxysporum root rot on Trifolium pratense in greenhouse conditions. J. Soil Sci. Plant Nutr. 9(2), 142–154 (2009)

    Google Scholar 

  36. El-Khallal, S.M.: Induction and modulation of resistance in tomato plants against Fusarium wilt disease by bioagent fungi (Arbuscular Mycorrhiza) and/or hormonal elicitors (jasmonic acid and salicylic acid), 1—changes in growth, some metabolic activities and endogenous hormones related to defense mechanism. Aust. Basic Appl. Sci. 1(4), 691–705 (2007)

    Google Scholar 

  37. Nafie, E.M.: The possible induction of resistance in Lupinus termis L. against Fusarium oxysporum by Streptomyces chibaensis and its mode of action, I. Changes in certain morphological criteria and biochemical composition related to induced resistance. Int. Agric. Biol. 5(4), 463–472 (2003)

    Google Scholar 

  38. Nemec, S.: Stress-related compounds in xylem fluid of blight-diseased citrus containing Fusarium solani nophthazarin toxins and their effect on the host. Can. J. Microbiol. 41, 515–524 (1995)

    Article  Google Scholar 

  39. Jayaraj, J.; Wan, A.; Rahman, M.; Punja, Z.K.: Seaweed extract reduces foliar fungal diseases on carrot. Crop Prot. 27, 1360–1366 (2008)

    Article  Google Scholar 

  40. Pise, N.M.; Sabale, A.B.: Effect of seaweed concentrates on the growth and biochemical constituents of Trigonella foenum-graecum L. J. Phytol. 2(4), 50–56 (2010)

    Google Scholar 

  41. Hashem, M.; Hamada, A.M.: Evaluation of two biologically active compounds for control of wheat root rot and its causal pathogens. Mycobiology 30(4), 233–239 (2002)

    Article  Google Scholar 

  42. Al-Hakimi, A.M.A.; Alghalibi, S.M.S.: Thiamin and salicylic acid as biological alternatives for controlling broad been rot. Appl. Sci. Environ. Manag. 11(4), 125–131 (2007)

    Google Scholar 

  43. Thirumaran, G.; Arumugam, M.; Arumugam, R.; Anantharaman, P.: Effect of seaweed liquid fertilizer on growth and pigment concentration of Abelmoschus esculentus (I) Medikus. Am. Euras. J. Agron. 2, 57–66 (2009)

    Google Scholar 

  44. Heiser, I.; Obwald, W.; Elstner, E.: The formation of reaction oxygen species by fungal and bacterial phytoxins. Plant Physiol. Biochem. 36, 703–713 (1998)

    Article  Google Scholar 

  45. Bishop, D.L.; Chatterton, N.J.; Harrison, P.A.; Hatfield, R.D.: Changes in carbohydrate coordinated partitioning and cell wall remodeling with stress-induced pathogenesis in wheat sheaths. Physiol. Mol. Plant 61, 53–63 (2002)

    Article  Google Scholar 

  46. Vafaii, A.A.; Ketabchi, S.; Moradshahi, A.: Effect of benzo (1,2,3) thiadiazole-7-carbothioic acid and S-methyl ester (BTH) on biochemical responses of wheat seedlings infected by Fusarium culmorum. Int. J. Farm. Allied Sci. 2(12), 334–342 (2013)

    Google Scholar 

  47. Arad, S.M.; Richmond, A.E.: Leaf cell water and enzyme activity. Plant Physiol. 57(4), 656–658 (1976)

    Article  Google Scholar 

  48. Abu-Taleb, A.M.; Al-Mousa, A.A.: Evaluation of the antifungal activity of vitavax and Trichoderma viride against two wheat root rot pathogens. Appl. Biosci. 6, 140–149 (2008)

    Google Scholar 

  49. Matthäus, K.; Dunicke, S.; Vahjen, W.; Simon, O.; Wang, J.; Valenta, H.: Progression of mycotoxin and nutrient concentrations in wheat after inoculation with Fusarium culmorum. Arch. Anim. Nutr. 58(1), 19–35 (2004)

    Article  Google Scholar 

  50. Kharazian, Z.A.; Aghdasi, M.; Jouzan, G.S.; Zamani, M.: Effects of Fusarium verticillioides and lactobacillus strains inoculation on growth and antioxidant enzymes activity of Zea mays plants. J. Hortic. Res. 25(2), 67–74 (2017)

    Article  Google Scholar 

  51. Anand, T.; Bhaskaran, R.; Raguchander, T.; Samiyappan, R.; Prakasam, V.; Gopalakrishnan, C.: Defence responses of chilli fruits to Colletotrichum capsici and Alternaria alternate. Biol. Plant. 53(3), 553–559 (2009)

    Article  Google Scholar 

  52. Dignum, M.J.W.; Kerler, J.; Verpoorte, R.: B-Glucosidase and peroxidase stability in crude enzyme extracts from green beans of Vanilla planifolia Andrews. Phytochem. Anal. 12, 174–179 (2001)

    Article  Google Scholar 

  53. Hammerschmidt, R.; Nuckles, E.; Kuc, J.: Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Phys. Plant Physiol. 20, 73–80 (1982)

    Article  Google Scholar 

  54. Cawood, M.E.; Pretorius, J.C.; Westhuizen, A.J.V.; Pretorius, Z.A.: Disease development and PR-protein activity in wheat (Triticum aestivum) seedlings treated with plant extracts prior to leaf rust (Puccinia triticina) infection. Crop Prot. 29(11), 1311–1319 (2010)

    Article  Google Scholar 

  55. Liu, X.; Huang, B.: Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci. 40, 503–510 (2000)

    Article  Google Scholar 

  56. Anjum, T.; Fatima, S.; Amjad, S.: Physiological changes in wheat during development of loose smut. Trop. Plant Pathol. 37(2), 102–107 (2012)

    Google Scholar 

  57. Lizzi, Y.; Coulomb, C.; Polian, C.; Coulomb, P.J.; Coulomb, P.O.: Seaweed and mildew, what does the future hold? Encouraging laboratory results. Phytoma Def. Plants 508, 29–30 (1998)

    Google Scholar 

  58. Cox, S.; Abu-Ghannam, N.; Gupta, S.: An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Int. Food Res. J. 17, 205–220 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa M. El-Sheekh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sheekh, M.M., Mousa, A.S.H. & Farghl, A.A.M. Biological Control of Fusarium Wilt Disease of Tomato Plants Using Seaweed Extracts. Arab J Sci Eng 45, 4557–4570 (2020). https://doi.org/10.1007/s13369-020-04518-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04518-2

Keywords

Navigation