Skip to main content
Log in

Corrosion Inhibition Performance of Acarbose on Mild Steel Corrosion in Acidic Medium: An Experimental and Computational Study

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Acarbose was investigated for the first time as a green inhibitor of mild steel corrosion in 1.0 M HCl using theoretical and experimental techniques. Acarbose was seen to act as a mixed type of inhibitor from polarization studies. Activation and thermodynamic parameters and their effect on inhibition efficiency are reported. Langmuir adsorption isotherm was obeyed as a result of adsorption of inhibitor on metal surface. Computational calculations, i.e., molecular dynamic simulations and density functional theory, were used to acquire detailed theoretical insights. Appreciable inhibition efficiency was obtained from all the combined results. A maximum inhibition efficiency of 96% was recorded at 4000 ppm at 298 K. SEM and AFM techniques were performed for morphological and topographical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mahmoud, S.S.: Corrosion inhibition of iron by amphoteric surfactants in hydrochloric acid solutions. J. Mater. Sci. 42, 989–997 (2007)

    Article  Google Scholar 

  2. Behpour, M.; Ghoreishi, S.M.; Gandomi-Niasar, A.; Soltani, N.; Salavati-Niasari, M.: The inhibition of mild steel corrosion in hydrochloric acid media by two Schiff base compounds. J. Mater. Sci. 44, 2444–2453 (2009)

    Article  Google Scholar 

  3. Tang, L.; Li, X.; Mu, G.; Liu, G.; Li, L.; Liu, H.; Si, Y.: The synergistic inhibition between hexadecyltrimethyl ammonium bromide (HTAB) and NaBr for the corrosion of cold rolled steel in 0.5 M sulfuric acid. J. Mater. Sci. 41, 3063–3069 (2006)

    Article  Google Scholar 

  4. Kumar, A.; Bashir, S.: Review on corrosion inhibition of steel in acidic media. Int. J. ChemTech Res. 8, 391–396 (2015)

    Google Scholar 

  5. Verma, C.; Lgaz, H.; Verma, D.K.; Ebenso, E.E.; Bahadur, I.; Quraishi, M.A.: Molecular dynamics and Monte Carlo simulations as powerful tools for study of interfacial adsorption behavior of corrosion inhibitors in aqueous phase: a review. J. Mol. Liq. 260, 99–120 (2018)

    Article  Google Scholar 

  6. Parveen, G.; Bashir, S.; Thakur, A.; Saha, S.K.; Banerjee, P.; Kumar, A.: Experimental and computational studies of imidazolium based ionic liquid 1-methyl-3-propylimidazolium iodide on mild steel corrosion in acidic solution. Mater. Res. Express 7, 016510 (2019)

    Article  Google Scholar 

  7. Okafor, P.C.; Osabor, V.I.; Ebenso, E.E.: Eco-friendly corrosion inhibitors: inhibitive action of ethanol extracts of Garcinia kola for the corrosion of mild steel in H2SO4 solutions. Pigment Resin Technol. 36, 134–140 (2007)

    Article  Google Scholar 

  8. Bashir, S.; Singh, G.; Kumar, A.: Shatavari (Asparagus racemosus) as green corrosion inhibitor of aluminium in acidic medium. J. Mater. Environ. Sci. 8, 4284 (2017)

    Google Scholar 

  9. Matad, P.B.; Mokshanatha, P.B.; Hebbar, N.; Venkatesha, V.T.; Tandon, H.C.: Ketosulfone drug as a green corrosion inhibitor for mild steel in acidic medium. Ind. Eng. Chem. Res. 53, 8436–8444 (2014)

    Article  Google Scholar 

  10. Shukla, S.K.; Singh, A.K.; Ahamad, I.; Quraishi, M.A.: Streptomycin: a commercially available drug as corrosion inhibitor for mild steel in hydrochloric acid solution. Mater. Lett. 63, 819–822 (2009)

    Article  Google Scholar 

  11. Ahamad, I.; Prasad, R.; Quraishi, M.A.: Adsorption and inhibitive properties of some new Mannich bases of Isatin derivatives on corrosion of mild steel in acidic media. Corros. Sci. 52, 1472–1481 (2010)

    Article  Google Scholar 

  12. Reza, I.; Saleemi, A.; Naveed, S.: Corrosion inhibition of mild steel in HCl solution by tinidazole. Pol. J. Chem. Technol. 13, 67–71 (2011)

    Article  Google Scholar 

  13. Vaszilcsin, N.; Ordodi, V.; Borza, A.: Corrosion inhibitors from expired drugs. Int. J. Pharm. 431, 241–244 (2012)

    Article  Google Scholar 

  14. Bashir, S.; Thakur, A.; Lgaz, H.; Chung, I.M.; Kumar, A.: Computational and experimental studies on phenylephrine as anti-corrosion substance of mild steel in acidic medium. J. Mol. Liq. 82, 233–251 (2018)

    Google Scholar 

  15. Kumar, A.; Bashir, S.: Ethambutol: a new and effective corrosion inhibitor of mild steel in acidic medium. Russ. J. Appl. Chem. 89, 1158–1163 (2016)

    Article  Google Scholar 

  16. Kumar, R.; Chahal, S.; Kumar, S.; Lata, S.; Lgaz, H.; Salghi, R.; Jodeh, S.: Corrosion inhibition performance of chromone-3-acrylic acid derivatives for low alloy steel with theoretical modeling and experimental aspects. J. Mol. Liq. 243, 439–450 (2017)

    Article  Google Scholar 

  17. Delley, B.: From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756–7764 (2007)

    Article  Google Scholar 

  18. Materials Studio, Revision 6.0. Accelrys Inc., San Diego, USA (2013)

  19. Perdew, J.P.; Burke, K.; Wang, Y.: Erratum: Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 57, 14999 (1996)

    Article  Google Scholar 

  20. Mulliken, R.S.: Electronic population analysis on LCAO–MO molecular wave functions. J. Chem. Phys. 23, 1833–1840 (1995)

    Article  Google Scholar 

  21. Pearson, R.G.: Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem. 27, 734–740 (1988)

    Article  Google Scholar 

  22. Sastri, V.S.; Perumareddi, J.R.: Molecular orbital theoretical studies of some organic corrosion inhibitors. Corrosion 53, 617–622 (1997)

    Article  Google Scholar 

  23. Martinez, S.: Inhibitory mechanism of mimosa tannin using molecular modeling and substitutional adsorption isotherms. Mater. Chem. Phys. 77, 97–102 (2003)

    Article  Google Scholar 

  24. Cao, Z.; Tang, Y.; Cang, H.; Xu, J.; Lu, G.; Jing, W.: Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part II: theoretical studies. Corros. Sci. 83, 292–298 (2014)

    Article  Google Scholar 

  25. Kokalj, A.: On the HSAB based estimate of charge transfer between adsorbates and metal surfaces. Chem. Phys. 393, 1–12 (2012)

    Article  Google Scholar 

  26. Lgaz, H.; Salghi, R.; Bhat, K.S.; Chaouiki, A.; Jodeh, S.: Correlated experimental and theoretical study on inhibition behavior of novel quinoline derivatives for the corrosion of mild steel in hydrochloric acid solution. J. Mol. Liq. 244, 154–168 (2017)

    Article  Google Scholar 

  27. Abdallah, M.: Antibacterial drugs as corrosion inhibitors for corrosion of aluminium in hydrochloric solution. Corros. Sci. 1, 1981–1996 (2004)

    Article  Google Scholar 

  28. Dhaundiyal, P.; Bashir, S.; Sharma, V.; Kumar, A.: An investigation on mitigation of corrosion of aluminium by Origanum vulgare in acidic medium. Prot. Met. Phys. Chem. Surf. 54, 148–152 (2018)

    Article  Google Scholar 

  29. Solmaz, R.: Investigation of corrosion inhibition mechanism and stability of vitamin B1 on mild steel in 0.5 M HCl solution. Corros. Sci. 81, 75–84 (2014)

    Article  Google Scholar 

  30. Bashir, S.; Lgaz, H.; Chung, I.M.; Kumar, A.: Potential of venlafaxine in the inhibition of mild steel corrosion in HCl: insights from experimental and computational studies. Chem. Pap. 73, 2255–2264 (2019)

    Article  Google Scholar 

  31. Saha, S.K.; Dutta, A.; Ghosh, P.; Sukul, D.; Banerjee, P.: Adsorption and corrosion inhibition effect of Schiff base molecules on the mild steel surface in 1 M HCl medium: a combined experimental and theoretical approach. Phys. Chem. Chem. Phys. 17, 5679–5690 (2015)

    Article  Google Scholar 

  32. Verma, C.; Olasunkanmi, L.O.; Ebenso, E.E.; Quraishi, M.A.; Obot, I.B.: Adsorption behavior of glucosamine-based, pyrimidine-fused heterocycles as green corrosion inhibitors for mild steel: experimental and theoretical studies. J. Phys. Chem. C 120, 11598–11611 (2016)

    Article  Google Scholar 

  33. Pavithra, M.K.; Venkatesha, T.V.; Kumar, M.P.; Tondan, H.C.: Inhibition of mild steel corrosion by Rabeprazole sulfide. Corros. Sci. 60, 104–111 (2012)

    Article  Google Scholar 

  34. Zhang, D.; Tang, Y.; Qi, S.; Dong, D.; Cang, H.; Lu, G.: The inhibition performance of long-chain alkyl-substituted benzimidazole derivatives for corrosion of mild steel in HCl. Corros. Sci. 102, 517–522 (2016)

    Article  Google Scholar 

  35. Lgaz, H.; Salghi, R.; Jodeh, S.; Hammouti, B.: Effect of clozapine on inhibition of mild steel corrosion in 1.0 M HCl medium. J. Mol. Liq. 225, 271–280 (2017)

    Article  Google Scholar 

  36. Chen, W.; Hong, S.; Xiang, B.; Luo, H.Q.; Li, M.; Li, N.B.: Corrosion inhibition of copper in hydrochloric acid by coverage with trithiocyanuric acid self-assembled monolayers. Corros. Eng., Sci. Technol. 48, 98–107 (2013)

    Article  Google Scholar 

  37. Abu-Dalo, M.A.; Al-Rawashdeh, N.A.; Ababneh, A.: Evaluating the performance of sulfonated kraft lignin agent as corrosion inhibitor for iron-based materials in water distribution systems. Desalination 313, 105–114 (2013)

    Article  Google Scholar 

  38. Sharma, V.; Kumar, S.; Bashir, S.; Ghelichkhah, Z.; Obot, I.B.; Kumar, A.: Use of Sapindus (reetha) as corrosion inhibitor of aluminium in acidic medium. Mater. Res. Express 5, 076510 (2018)

    Article  Google Scholar 

  39. Mishra, A.; Verma, C.; Lgaz, H.; Srivastava, V.; Quraishi, M.A.; Ebenso, E.E.: Synthesis, characterization and corrosion inhibition studies of N-phenyl-benzamides on the acidic corrosion of mild steel: experimental and computational studies. J. Mol. Liq. 251, 317–332 (2018)

    Article  Google Scholar 

  40. Singh, A.; Kumar, A.; Pramanik, T.: A theoretical approach to the study of some plant extracts as green corrosion inhibitor for mild steel in HCl solution. Orient. J. Chem. 29, 277–283 (2013)

    Article  Google Scholar 

  41. Lgaz, H.; Bhat, K.S.; Salghi, R.; Jodeh, S.; Algarra, M.; Hammouti, B.; Essamri, A.: Insights into corrosion inhibition behavior of three chalcone derivatives for mild steel in hydrochloric acid solution. J. Mol. Liq. 238, 71–83 (2017)

    Article  Google Scholar 

  42. Bashir, S.; Sharma, V.; Lgaz, H.; Chung, I.M.; Singh, A.; Kumar, A.: The inhibition action of analgin on the corrosion of mild steel in acidic medium: a combined theoretical and experimental approach. J. Mol. Liq. 263, 454–462 (2018)

    Article  Google Scholar 

  43. Guo, L.; Ren, X.; Zhou, Y.; Xu, S.; Gong, Y.; Zhang, S.: Theoretical evaluation of the corrosion inhibition performance of 1,3-thiazole and its amino derivatives. Arab. J. Chem. 10, 121–130 (2017)

    Article  Google Scholar 

  44. Ansari, K.R.; Quraishi, M.A.; Singh, A.: Pyridine derivatives as corrosion inhibitors for N80 steel in 15% HCl: electrochemical, surface and quantum chemical studies. Measurement 76, 136–147 (2015)

    Article  Google Scholar 

  45. Singh, A.; Pramanik, T.; Kumar, A.; Gupta, M.: Phenobarbital: a new and effective corrosion inhibitor for mild steel in 1 M HCl solution. Asian J. Chem. 25, 9808 (2013)

    Article  Google Scholar 

  46. Musa, A.Y.; Jalgham, R.T.; Mohamad, A.B.: Molecular dynamic and quantum chemical calculations for phthalazine derivatives as corrosion inhibitors of mild steel in 1 M HCl. Corros. Sci. 56, 176–183 (2012)

    Article  Google Scholar 

  47. Hmamou, D.B.; Salghi, R.; Zarrouk, A.; Aouad, M.R.; Benali, O.; Zarrok, H.; Ebenso, E.E.: Weight loss, electrochemical, quantum chemical calculation, and molecular dynamics simulation studies on 2-(benzylthio)-1,4,5-triphenyl-1H-imidazole as an inhibitor for carbon steel corrosion in hydrochloric acid. Ind. Eng. Chem. Res. 52, 14315–14327 (2013)

    Article  Google Scholar 

  48. Jiang, L.; Qiang, Y.; Lei, Z.; Wang, J.; Qin, Z.; Xiang, B.: Excellent corrosion inhibition performance of novel quinoline derivatives on mild steel in HCl media: experimental and computational investigations. J. Mol. Liq. 255, 53–63 (2018)

    Article  Google Scholar 

  49. Bashir, S.; Sharma, V.; Singh, G.; Lgaz, H.; Salghi, R.; Singh, A.; Kumar, A.: Electrochemical behavior and computational analysis of phenylephrine for corrosion inhibition of aluminum in acidic medium. Met. Mater. Trans. A 50, 468–479 (2019)

    Article  Google Scholar 

  50. Singh, A.; Soni, N.; Deyuan, Y.; Kumar, A.: A combined electrochemical and theoretical analysis of environmentally benign polymer for corrosion protection of N80 steel in sweet corrosive environment. Res. Phys. 13, 102116 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, S., Thakur, A., Lgaz, H. et al. Corrosion Inhibition Performance of Acarbose on Mild Steel Corrosion in Acidic Medium: An Experimental and Computational Study. Arab J Sci Eng 45, 4773–4783 (2020). https://doi.org/10.1007/s13369-020-04514-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04514-6

Keywords

Navigation