Skip to main content

Advertisement

Log in

Identification and Bioactivities of Two Endophytic Fungi Fusarium fujikuroi and Aspergillus tubingensis from Foliar Parts of Debregeasia salicifolia

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Endophytic fungi isolated from medicinal plants are important for production of antibiotics. They can produce secondary metabolites with diverse structures and activities. Debregeasia salicifolia is a plant of medicinal importance, and no report exists regarding isolation of endophytic fungi from it. This study was focused to isolate and identify culturable endophytic fungi from foliar parts of D. salicifolia and to determine their bioactivities. Molecular analysis resulted in identification of Fusarium fujikuroi, Aspergillus tubingensis and Rhizopus oryzae based on specific internal transcribed spacer primer (ITS1/ITS4). Our analysis revealed that all fungal endophytes possess antibacterial activity against Gram-negative and Gram-positive bacteria. Remarkably, Rhizopus oryzae at a concentration of 5 mg/mL efficiently restricted the growth of ATCC strain of E. coli in comparison with positive control ciprofloxacin. Rhizopus oryzae and F. fujikuroi at a concentration of 1000 µg/ml exhibited maximum antioxidant activity of 45% and 44%, respectively. They also showed antifungal activity ranging from 60 to 75% against Aspergillus flavus and Aspergillus niger. Our analysis of the fungal extracts through GC–MS indicated the presence of 21 compounds of diverse nature and structure. In conclusion, our study highlighted the potential of D. salicifolia to host a plethora of fungal endophytes that secrete potentially therapeutic bioactive metabolites

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Monowar, T.; Rahman, M.; Bhore, S.; Raju, G.; Sathasivam, K.: Silver nanoparticles synthesized by using the endophytic bacterium pantoeaananatis are promising antimicrobial agents against multidrug resistant bacteria. Molecules 23(12), 3220 (2018)

    Article  Google Scholar 

  2. Proia, L.; Anzil, A.; Subirats, J.; Borrego, C.; Farre, M.; Llorca, M.; Balcázar, J.L.; Servais, P.: Antibiotic resistance along an urban river impacted by treated wastewaters. Sci. Total Environ. 628, 453–466 (2018)

    Article  Google Scholar 

  3. Subramani, R.; Narayanasamy, M.; Feussner, K.: Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. 3 Biotech 7, 172 (2017)

    Article  Google Scholar 

  4. Cioch, M.; Satora, P.; Skotniczny, M.; Semik-Szczurak, D.; Tarko, T.: Characterisation of antimicrobial properties of extracts of selected medicinal plants. Pol. J. Microbiol. 66, 463–472 (2017)

    Article  Google Scholar 

  5. Daniel, J.J.; Zabot, G.L.; Tres, M.V.; Harakava, R.; Kuhn, R.C.; Mazutti, M.A.: Fusariumfujikuroi: a novel source of metabolites with herbicidal activity. Biocatal. Agric. Biotechnol. 14, 314–320 (2018)

    Article  Google Scholar 

  6. Waheed, A.; Bibi, Y.; Nisa, S.; Chaudhary, F.M.; Sahreen, S.; Zia, M.: Inhibition of human breast and colorectal cancer cells by Viburnum foetens L. extracts in vitro. Asian Pac. J. Trop. Dis. 3(1), 32–36 (2013)

    Article  Google Scholar 

  7. Gouda, S.; Das, G.; Sen, S.K.; Shin, H.S.; Patra, J.K.: Endophytes: a treasure house of bioactive compounds of medicinal importance. Front. Microbiol. 7, 1538 (2016)

    Article  Google Scholar 

  8. Molina, G.; Pimentel, M.R.; Bertucci, T.C.; Pastore, G.M.: Application of fungal endophytes in biotechnological processes. Chem. Eng. Trans. 27, 289–294 (2012)

    Google Scholar 

  9. Radic, N.; Strukelj, B.: Endophytic fungi: the treasure chest of antibacterial substances. Phytomedicine 19(14), 1270–1284 (2012)

    Article  Google Scholar 

  10. Deshmukh, S.K.; Verekar, S.A.; Bhave, S.V.: Endophytic fungi: a reservoir of antibacterials. Front. Microbiol. 8(5), 715 (2014)

    Google Scholar 

  11. Liang, H.; Xing, Y.; Chen, J.; Zhang, D.; Guo, S.; Wang, C.: Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae). BMC Complement. Altern. Med. 12(238), 1–6 (2012)

    Google Scholar 

  12. Gherbawy, Y.; Gashgari, R.: Molecular characterization of endophytic fungi from Calotropis procera plants in Taif region (Saudi Arabia) and their antifungal activities. Plant. Biosyst. 148(6), 1085–1092 (2014)

    Article  Google Scholar 

  13. Idris, A.; Ietidal, A.; Idris, M.: Antibacterial activity of endophytic fungi extracts from the medicinal plant Kigeliaafricana. Egypt. Acad. J. Biol. Sci. 5(1), 1–9 (2013)

    Google Scholar 

  14. Bhardwaj, A.; Sharma, D.; Jodan, N.; Agrawal, P.K.: Antimicrobial and phytochemical screening of endophytic fungi isolated from spikes of Pinus roxburghii. Arch. Clin. Microbiol. 6(3), 1–9 (2015)

    Google Scholar 

  15. Venieraki, A.; Dimou, M.; Katinakis, P.: Endophytic fungi residing in medicinal plants have the ability to produce the same or similar pharmacologically active secondary metabolites as their hosts. Hell. Plant Protect. J. 10, 51–66 (2017)

    Article  Google Scholar 

  16. Liarzi, O.; Bucki, P.; Miyara, S.B.; Ezra, D.: Bioactive volatiles from an endophytic Daldinia cf. concentrica isolate affect the viability of the plant parasitic nematode Meloidogyne javanica. PLoS ONE 11(12), e0168437 (2016)

    Article  Google Scholar 

  17. Debbab, A.; Aly, A.H.; Proksch, P.: Endophytes and associated marine derived fungi ecological and chemical perspective. Fungal Divers. 57(1), 45–83 (2012)

    Article  Google Scholar 

  18. Clay, K.: Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69(1), 10–16 (1988)

    Article  Google Scholar 

  19. Qin, S.; Feng, W.W.; Wang, T.T.; Ding, P.; Xing, K.; Jiang, J.H.: Plant growth-promoting effect and genomic analysis of the beneficial endophyte Streptomyces sp. KLBMP 5084 isolated from halophyte Limonium sinense. Plant Soil 416(1–2), 117–132 (2017)

    Article  Google Scholar 

  20. Singh, L.P.; Gill, S.S.; Tetuje, N.: Unravelling the role of fungal symbionts in plant abiotic stress tolerance. Plant. Signal. Behav. 6, 175–191 (2011)

    Article  Google Scholar 

  21. Hoffman, M.T.; Gunatilaka, M.K.; Wijeratne, K.; Gunatilaka, L.; Arnold, A.E.: Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte. PLoS ONE 8(9), e73132 (2013)

    Article  Google Scholar 

  22. Deng, Z.; Cao, L.; Huang, H.; Jiang, X.; Wang, W.; Shi, Y.; Zhang, R.: Characterization of Cd-and Pb-resistant fungal endophyte Mucor sp. CBRF59 isolated from rapes (Brassica chinensis) in a metal-contaminated soil. J. Hazard. Mater. 2(3), 717–724 (2011)

    Article  Google Scholar 

  23. Khan, A.L.; Waqas, M.; Hussain, J.; Al-Harrasi, A.; Lee, I.J.: Fungal endophyte Penicillium janthinellum LK5 can reduce cadmium toxicity in Solanum lycopersicum (Sitiens and Rhe). Biol. Fert. Soils 50(1), 75–85 (2014)

    Article  Google Scholar 

  24. Negi, C.S.; Nautiyal, S.; Dasila, L.; Rao, K.S.; Maikhuri, R.K.: Ethnomedicinal plant uses in a small tribal community in a part of central Himalaya, India. J. Hum. Ecol. 14(1), 23–31 (2003)

    Article  Google Scholar 

  25. Almubayedh, H.; Ahmad, R.: Ethnopharmacological uses, phytochemistry, biological activities of Debregeasia salicifolia: a review. J. Ethnopharmacol. 231(1), 179–186 (2019)

    Article  Google Scholar 

  26. Bibi, Y.; Nisa, S.; Chaudhary, F.M.; Zia, M.: Antibacterial activity of some selected medicinal plants of Pakistan. BMC Complement. Altern. Med. 11(1), 52–63 (2011)

    Article  Google Scholar 

  27. Nisa, S.; Bibi, Y.; Waheed, A.; Zia, M.; Sarwar, S.; Ahmed, S.; Chaudhary, M.F.: Evaluation of anticancer activity of Debregeasia salicifolia extract against estrogen receptor positive cell line. Afr. J. Biotechnol. 10(6), 990–995 (2011)

    Google Scholar 

  28. Dugan, F.M., Dugan, F.M.: The identification of fungi: an illustrated introduction with keys, glossary, and guide to literature. The American Phytopathological Society Publications, USA (2017). https://doi.org/10.1094/9780890545041

    Book  Google Scholar 

  29. Nisa, H.; Azra, N.; Irshad, K.A.; Mohd, N.; Bhat, S.; Nazi, R.: Isolation and identification of endophytic fungi from Artemisia scoparia (Asteraceae). Int. J. Theor. Appl. Sci. 10(1), 83–88 (2018)

    Google Scholar 

  30. Bibi, Y.; Nisa, S.; Zia, M.; Waheed, A.; Ahmed, S.; Chaudhary, M.F.: The study of anticancer and antifungal activities of Pistacia integerrima extract in vitro. Indian J. Pharm. Sci. 74(4), 375–379 (2012)

    Article  Google Scholar 

  31. Naz, R.; Ayub, H.; Nawaz, S.; Islam, Z.U.; Yasmin, T.; Bano, A.; Wakeel, A.; Zia, S.; Roberts, T.H.: Antimicrobial activity, toxicity and anti-inflammatory potential of methanolic extracts of four ethnomedicinal plant species from Punjab, Pakistan. BMC Complement. Altern. Med. 17, 302 (2017)

    Article  Google Scholar 

  32. Bibi, Y.; Naeem, J.; Zahara, K.; Arshad, M.; Qayyu, A.: In vitro antimicrobial assessment of selected plant extracts from Pakistan. Iran. J. Sci. Technol. Trans. A Sci. 42(1), 267–272 (2018)

    Article  Google Scholar 

  33. Hussein, H.M.; Hameed, I.H.; Ibraheem, O.A.: Antimicrobial activity and spectral chemical analysis of methanolic leaves extract of Adiantum capillus-veneris using GC-MS and FTIR spectroscopy. Int. J. Pharm. Phytochem. Res. 8(3), 369–385 (2016)

    Google Scholar 

  34. Devakumar, J.; Keerthana, V.; Sudha, S.S.: Identification of bioactive compounds by gas chromatography-mass spectrometry analysis of Syzygium jambos (L.) collected from western ghats region Coimbatore, Tamilnadu. Asian J. Pharm. Clin. Res. 10(1), 364–369 (2017)

    Google Scholar 

  35. Kadhim, M.J.; Mohammed, G.J.; Hussein, H.M.: Analysis of bioactive metabolites from Candida albicans using (GC-MS) and evaluation of antibacterial activity. Int. J. Pharma. Clin. Res. 8(7), 655–670 (2016)

    Google Scholar 

  36. Subavathy, P.; Thilaga, R.D.: GC-MS analysis of bioactive compounds from whole body tissue methanolic extract of Cypraea arabica. World J. Pharm. Res. 5(6), 800–806 (2016)

    Google Scholar 

  37. Singh, D.; Rathod, V.; Singh, A.K.: Phytochemical analysis of the crude extracts of endophytic fungus, Alternaria sp. from the medicinal plant Euphorbia hirta (L.). Int. J. Green Chemist. Bioprocess 5(2), 14–20 (2015)

    Google Scholar 

  38. Mohammed, G.J.; Hameed, I.H.; Kamal, S.A.: Analysis of methanolic extract of Fusarium chlamydosporum using GC-MS technique and evaluation of its antimicrobial activity. Indian J. Public Health Res. Dev. (2018). https://doi.org/10.5958/0976-5506.2018.00214.0

    Article  Google Scholar 

  39. Hameed, R.H.; Shareefi, E.A.; Hameed, I.H.: Analysis of methanolic fruit extract of Citrus aurantifolia using gas chromatography-mass spectrum and FT-IR techniques and evaluation of its anti-bacterial activity. Indian J. Public Health Dev. 9(5), 480–486 (2018)

    Article  Google Scholar 

  40. Nicoletti, R.; Fiorentino, A.: Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture 5(4), 918–970 (2015)

    Article  Google Scholar 

  41. Mujeeb, F.; Bajpai, P.; Pathak, N.: Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. Bio. Med. Res. Int. 2014, 11 (2014)

    Google Scholar 

  42. Rouis-Soussi, L.S.; Ayeb-Zakhama, A.E.; Mahjoub, A.; Flamini, G.; Jannet, H.B.; Harzallah-Skhiri, F.: Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L. EXCLI J. 13, 526–535 (2014)

    Google Scholar 

  43. Kraub, J.; Bracher, F.: Pharmacokinetic enhancers (boosters)—escort for drugs against degrading enzymes and beyond. Sci. Pharm. 86, 43 (2018)

    Article  Google Scholar 

  44. Rudramurthy, S.M.; Colley, T.; Abdolrasouli, A.; Ashman, J.; Dhaliwal, M.; Kaur, H.; Armstrong-James, D.; Strong, P.; Rapeport, G.; Schelenz, S.; Ito, K.: In vitro antifungal activity of a novel topical triazole PC945 against emerging yeast Candida auris. J. Antimicrob. Chemother. 74(10), 2943–2949 (2019)

    Article  Google Scholar 

  45. Khatua, S.; Pandey, A.; Biswas, S.J.: Phytochemical evaluation and antimicrobial properties of Trichosanthes dioica root extract. J. Pharm. Phytochem. 5(5), 410–413 (2016)

    Google Scholar 

  46. Agboke, A.A.; Attama, A.A.: Bioactive components and antibacterial activities of n-hexane extract of Moringa oleifera root bark on clinical isolates of methicilin resistant Staphylococcus aureus. Int. J. Curr. Res. Chem. Pharm. Sci. 3(3), 1–9 (2016)

    Google Scholar 

  47. Wei, L.S.; Wee, W.; Siong, J.Y.F.; Syamsumir, D.F.: Characterization of anticancer, antimicrobial, antioxidant properties and chemical compositions of Peperomia pellucida leaf extract. Acta Med. Iran. 49(10), 670–674 (2011)

    Google Scholar 

  48. Segueni, N.; Zellagui, A.; Boulechfar, S.; Derouiche, K.; Rhouati, S.: Essential oil of Hertia cheirifolia leaves: chemical composition, antibacterial and antioxidant activities. J. Mater. Environ. Sci. 8(2), 551–556 (2017)

    Google Scholar 

  49. Altameme, H.J.; Hameed, I.H.; Abu-Serag, N.A.: Analysis of bioactive phytochemical compounds of two medicinal plants, Equisetum arvense and Alchemila valgaris seeds using gas chromatography-mass spectrometry and fourier-transform infrared spectroscopy. Malays. Appl. Biol. 44(4), 47–58 (2015)

    Google Scholar 

  50. Dinesh, M.G.; Subbarayan, R.; Rallapalli, S.; Kansrajh, C.; Kalaivani, R.: Terminalia bellerica leaf extracts induce apoptosis in Hep G2 cells and regulates cell cycle progression by inducing G2/M cell cycle arrest. Indian J. Res. Pharm. Biotechnol. 2(1), 1044 (2014)

    Google Scholar 

  51. Pawlwska, J.; Wilk, M.; Sliwinska-Wyrzychowska, A.; Mętrak, M.; Wrzosek, M.: The diversity of endophytic fungi in the above-ground tissue of two Lycopodium species in Poland. Symbiosis 63(2), 87–97 (2014)

    Article  Google Scholar 

  52. Tawfike, A.F.; Tate, R.; Abbott, G.; Young, L.; Viegelmann, C.; Schumacher, M.; Diederich, M.; Edrada-Ebel, R.: Metabolomic tools to assess the chemistry and bioactivity of endophytic Aspergillus strain. Chem. Biodivers. 14(10), e1700040 (2017)

    Article  Google Scholar 

  53. Kumara, P.M.; Zuehlke, S.; Priti, V.; Ramesha, B.T.; Shweta, S.; Ravikanth, G.; Vasudeva, R.; Santhoshkumar, T.R.; Spiteller, M.; Shaanker, R.U.: Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook. f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie Van Leeuwenhoek 101, 323–329 (2012)

    Article  Google Scholar 

  54. Mohamed, H.A.; Ebrahim, W.; Peterson, A.M.; Ozkaya, F.C.; Proksch, P.: Tensidols A and B from Aspergillus tubingensis strain and their biological activity. Mycol. Phytopatol. 53(4), 223–228 (2019)

    Google Scholar 

  55. Zakaria, L.; Izham, M.; Jamil, M.; Anuar, I.S.M.: Molecular characterization of endophytic fungi from roots of wild banana (Musa acuminata). Trop. Life Sci. Res. 27(1), 153–162 (2016)

    Google Scholar 

  56. Dame, Z.T.; Silima, B.; Gryzenhout, M.; Van Ree, T.: Bioactive compounds from the endophytic fungus Fusarium proliferatum. Nat. Prod. Res. 30(11), 1301–1304 (2016)

    Article  Google Scholar 

  57. Gong, L.J.; Guo, S.X.: Endophytic fungi from Dracaena cambodiana and Aquilaria sinensis and their antimicrobial activity. Afr. J. Biotechnol. 8(5), 731–736 (2009)

    Google Scholar 

  58. Summerell, B.A.; Leslie, J.F.: Fifty years of Fusarium: how could nine species have ever been enough? Fungal Divers. 50, 135–144 (2011)

    Article  Google Scholar 

  59. Chamkhi, I.; Sbabou, L.; Aurag, J.: Endophytic fungi isolated from Crocus sativus L. (saffron) as a source of bioactive secondary metabolites. Pharmacogn. J. 10(6), 1143–1148 (2018)

    Article  Google Scholar 

  60. Gunasekaran, S.; Sathiavelu, M.; Arunachalam, S.: In vitro antioxidant and antibacterial activity of endophytic fungi isolated from Mussaenda luteola. J. Appl. Pharm. Sci. 7(8), 234–238 (2017)

    Google Scholar 

  61. Hulikere, M.M.; Joshi, C.G.; Nivya, T.; Ananda, D.; Raju, N.G.: Antiangiogenic and antioxidant activity of endophytic fungus isolated from seaweed (Sargassum wightii). Asian J. Biochem. 11(4), 168–176 (2016)

    Article  Google Scholar 

  62. Chakravarthi, B.V.S.K.; Das, P.; Surendranath, K.; Karande, A.A.; Jayabaskaran, C.: Production of paclitaxel by Fusarium solani isolated from Taxus celebica. Bio. sci. 33, 259–267 (2008)

    Google Scholar 

  63. Tayung, K.; Barik, B.P.; Jha, D.K.; Deka, D.C.: Identification and characterization of antimicrobial metabolite from an endophytic fungus, Fusarium solani isolated from bark of Himalayan yew. Mycosphere 2(3), 203–213 (2011)

    Google Scholar 

  64. Kaul, S.; Gupta, S.; Ahmed, M.; Dhar, M.K.: Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem. Rev. 11, 487–505 (2012)

    Article  Google Scholar 

  65. Kusari, P.; Kusari, S.; Spiteller, M.; Kayser, O.: Endophytic fungi harbored in Cannabis sativa L.: diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Divers. 60, 137–151 (2013)

    Article  Google Scholar 

  66. Abdel-Motaal, F.F.; Nassar, M.S.; El-Zayat, S.A.; El-Sayed, M.A.; Ito, S.I.: Antifungal activity of endophytic fungi isolated from Egyptian henbane (Hyoscyamus muticus L.). Pak. J. Bot. 42(4), 2883–2894 (2010)

    Google Scholar 

  67. DiFranscesco, A.; Ugolini, L.; Lazzeri, L.; Mari, M.: Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism against post-harvest fruit pathogens. Biol. Control 81, 8–14 (2015)

    Article  Google Scholar 

  68. Deshmukh, S.K.; Gupta, M.K.; Prakash, V.; Saxena, S.: Endophytic fungi: a source of potential antifungal compounds. J. Fungi (2018). https://doi.org/10.3390/jof4030077

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Higher Education Commission Pakistan for financial support (NRPU#4695) during this research work under National Research Program for Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sobia Nisa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisa, S., Khan, N., Shah, W. et al. Identification and Bioactivities of Two Endophytic Fungi Fusarium fujikuroi and Aspergillus tubingensis from Foliar Parts of Debregeasia salicifolia. Arab J Sci Eng 45, 4477–4487 (2020). https://doi.org/10.1007/s13369-020-04454-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04454-1

Keywords

Navigation