Skip to main content
Log in

Impact of Entropy Generation and Nonlinear Thermal Radiation on Darcy–Forchheimer Flow of MnFe2O4-Casson/Water Nanofluid due to a Rotating Disk: Application to Brain Dynamics

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present article candidly states the incremental impact of nonlinear thermal radiation on heat transfer enhancement due to Darcy–Forchheimer flow of spinel-type MnFe2O4-Casson/water nanofluids due to a stretched rotating disk. In present contest, the entropy generation approach is highlighted specially as a powerful tool for the analysis of the brain function, in accordance with the theological and philosophical approach of Saint Thomas Aquinas. The some of the results of the present study that strengthening of permeability and Casson parameter contribute to the diminution of radial and tangential velocity profiles and yield shrinkage of the related boundary layers. An increase in thermal radiation leading to more heat propagating into the fluid thereby improves the TBL. Fluids with non-Newtonian behavior contribute greater entropy generation rate compared to Newtonian fluids. The most significant outcome is that the entropy generation makes a real contribution to the brain function or analysis of the function of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

Abbreviations

\( (u,v,w) \) :

Velocity components in increasing \( \left( {r,\,\phi ,\,z} \right) \) directions \( \left( {{\text{m}}\,{\text{s}}^{ - 1} } \right) \)

\( \rho_{\text{nf}} \) :

Effective density of the nanofluid \( \left( {{\text{kg}}\,{\text{m}}^{ - 3} } \right) \)

\( \left( {\rho C_{p} } \right)_{\text{nf}} \) :

Heat capacitance of the nanofluid \( \left( {{\text{J}}\,{\text{kg}}^{2} \,{\text{m}}^{3} \,{\text{K}}^{ - 1} } \right) \)

\( \left( {\rho C_{p} } \right)_{\text{f}} \) :

Heat capacitance of base fluid \( \left( {{\text{J}}\,{\text{kg}}^{2} \,{\text{m}}^{3} \,{\text{K}}^{ - 1} } \right) \)

\( \left( {\rho C_{p} } \right)_{\text{s}} \) :

Heat capacitance of solid nanoparticles \( \left( {{\text{J}}\,{\text{kg}}^{2} \,{\text{m}}^{3} \,{\text{K}}^{ - 1} } \right) \)

\( \rho_{\text{s}} \) :

Density of solid nanoparticles \( \left( {{\text{kg}}\,{\text{m}}^{ - 3} } \right) \)

\( \rho_{\text{f}} \) :

Density of base fluid \( \left( {{\text{kg}}\,{\text{m}}^{ - 3} } \right) \)

\( \mu_{\text{nf}} \) :

Effective dynamic viscosity of the nanofluid \( \left( {{\text{kg}}\,{\text{m}}^{ - 1} \,{\text{s}}^{ - 1} } \right) \)

\( \mu_{\text{f}} \) :

Effective dynamic viscosity of base fluid \( \left( {{\text{kg}}\,{\text{m}}^{ - 1} \,{\text{s}}^{ - 1} } \right) \)

\( \beta_{\text{f}} \) :

Thermal expansion of base fluid \( \left( {{\text{K}}^{ - 1} } \right) \)

\( \beta_{\text{s}} \) :

Thermal expansion of nanoparticle \( \left( {{\text{K}}^{ - 1} } \right) \)

\( k_{\text{nf}} \) :

TC of nanofluid \( \left( {{\text{W}}\,{\text{m}}^{ - 1} \,{\text{K}}^{ - 1} } \right) \)

\( k_{\text{f}} \) :

TC of base fluid \( \left( {{\text{W}}\,{\text{m}}^{ - 1} \,{\text{K}}^{ - 1} } \right) \)

\( k_{\text{s}} \) :

TC of nanoparticle \( \left( {{\text{W}}\,{\text{m}}^{ - 1} \,{\text{K}}^{ - 1} } \right) \)

\( T_{w} \) :

Surface temperature (K)

\( T \) :

Fluid temperature (K)

\( k* \) :

Mean absorption coefficient

\( \sigma * \) :

Stefan Boltzmann constant

\( p \) :

Pressure (Pa)

\( \alpha_{\text{f}} \) :

Thermal diffusivity of base fluid \( \left( {{\text{m}}^{2} \,{\text{s}}^{ - 1} } \right) \)

\( {\text{Gr}} = \frac{{g\beta_{\text{f}} T_{\infty } \left( {\theta_{\text{f}} - 1} \right)r^{3} }}{{\upsilon_{\text{f}}^{2} }} \) :

Thermal Grassof number

\( {\text{Rd}} = \frac{{4\sigma^{*} T_{\infty }^{3} }}{{k^{*} k_{\text{f}} }} \) :

Radiation parameter

\( F^{\prime}\left( \eta \right) \) :

Radial velocity

\( F\left( \eta \right) \) :

Axial velocity

\( K^{*} \) :

Permeability of porous medium

\( \text{Re} = r\left( {\frac{r\varOmega }{{\upsilon_{\text{f}} }}} \right) \) :

Rotational Reynolds number

\( \delta = \frac{a}{\varOmega } \) :

Stretching-strength parameter

Fr:

Inertia coefficient

\( F^{*} \left( { = \frac{{C_{\text{d}} }}{{rK^{{*^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} }} }}} \right) \) :

Non-uniform inertia coefficient

\( C_{\text{d}} \) :

Drag coefficient

\( S = \frac{W}{{\sqrt {2\varOmega \upsilon_{\text{f}} } }} \) :

Suction parameter

\( \alpha = \frac{\Delta T}{{T_{\infty } }} \) :

Thermal ratio parameter

\( {\text{Br}} = \frac{{\mu_{\text{nf}} \varOmega^{2} R^{2} }}{{k_{\text{nf}} \Delta T}} \) :

Rotational Brinkman number

\( \tilde{r} = \frac{r}{R} \) :

Dimensionless radial coordinate

\( N_{\text{G}} = \frac{{\dot{S}^{\prime\prime\prime}_{\text{gen}} }}{{\left( {{{k_{\text{nf}} \Delta T\varOmega } \mathord{\left/ {\vphantom {{k_{\text{nf}} \Delta T\varOmega } {T_{\infty } \upsilon_{\text{f}} }}} \right. \kern-0pt} {T_{\infty } \upsilon_{\text{f}} }}} \right)}} \) :

Dimensionless EG rate

\( T_{\text{f}} \) :

Temperature of heated fluid (K)

\( T_{\infty } \) :

Ambient fluid temperature (K)

\( K = \frac{{\upsilon_{\text{f}} }}{{\delta K^{*} }} \) :

Porosity parameter

\( h_{\text{f}} \) :

Heat transfer coefficient \( \left( {{\text{W}}\,{\text{m}}^{ - 2} \,{\text{K}}^{ - 1} } \right) \)

\( \beta \) :

Casson parameter

\( \phi \) :

Solid volume fraction

\( G\left( \eta \right) \) :

Tangential velocity

\( \theta \left( \eta \right) \) :

Non-dimensional temperature

\( \Pr = \frac{{v_{\text{f}} }}{{\alpha_{\text{f}} }} \) :

Prandtl number

\( {\text{Ec}} = \frac{{r^{2} \varOmega^{2} }}{{\left( {C_{p} } \right)_{\text{f}} T_{\infty } \left( {\theta_{\text{f}} - 1} \right)}} \) :

Eckert number

\( {\text{Bi}} = \frac{{h_{\text{f}} }}{{k_{\text{f}} }}\sqrt {\frac{{\upsilon_{\text{f}} }}{2\varOmega }} \) :

Biot number

\( \theta_{\text{f}} = \frac{{T_{\text{f}} }}{{T_{\infty } }} \) :

Temperature ratio parameter

\( \varOmega \) :

Constant angular velocity

\( \Delta T = T_{\text{f}} - T_{\infty } \) :

Temperature difference

\( \text{Re} = \frac{{\varOmega R^{2} }}{{\upsilon_{\text{f}} }} \) :

Rotational Reynolds number

EG:

Entropy generation

BLT:

Boundary layer thickness

TC:

Thermal conductivity

RD:

Rotating disk

TR:

Thermal radiation

DFF:

Darcy–Forchheimer flow

NLTR:

Nonlinear thermal radiation

TBL:

Thermal boundary layer

f:

Base fluid

nf:

Nanofluids

s:

Nano solid particles

References

  1. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publ. Fed 231, 99–106 (1995)

    Google Scholar 

  2. Lin, Y.; Zheng, L.; Zhang, X.; Ma, L.; Chen, G.: MHD pseudo-plastic nanofluid unsteady flow and heat transfer in a finite thin film over stretching surface with internal heat generation. Int. J. Heat Mass Transf. 84, 903–911 (2015)

    Google Scholar 

  3. Madhu, M.; Kishan, N.; Chamkha, A.J.: Unsteady flow of a Maxwell nanofluid over a stretching surface in the presence of magnetohydrodynamic and thermal radiation effects. Propuls. Power Res. 6, 31–40 (2017)

    Google Scholar 

  4. Bai, Y.; Liu, X.; Zhang, Y.; Zhang, M.: Stagnation-point heat and mass transfer of MHD Maxwell nanofluids over a stretching surface in the presence of thermophoresis. J. Mol. Liq. 224, 1172–1180 (2016)

    Google Scholar 

  5. Zadi, M.; Hashemi Pour, S.M.R.; Karimdoost Yasuri, A.; Chamkha, A.J.: Mixed convection of a nanofluid in a three-dimensional channel. J. Therm. Anal. Calorim. 136(6), 2461–2475 (2019)

    Google Scholar 

  6. Sheikholeslami, M.; Sajjadi, H.; Amri Delouei, A.; Atashafrooz, M.; Li, Z.: Magnetic force and radiation influences on nanofluid transportation through a permeable media considering Al2O3nanoparticles, mixed convection of a nanofluid in a three-dimensional channel. J. Therm. Anal. Calorim. 136(6), 2477–2485 (2019)

    Google Scholar 

  7. Hayat, T.; Kiyani, M.Z.; Alsaedi, A.; Khan, M.I.; Ahmad, I.: Mixed convective three dimensional flow of Williamson nanofluid subject to chemical reaction. Int. J. Heat Mass Transf. 127, 422–429 (2018)

    Google Scholar 

  8. Von Kármán, T.: Überlaminare und turbulente Reibung. Z. Angew. Math. Mech. 1, 233–252 (1921)

    MATH  Google Scholar 

  9. Turkyilmazoglu, M.; Senel, P.: Heat and mass transfer of the flow due to a rotating rough and porous disk. Int. J. Therm. Sci. 63, 146–158 (2013)

    Google Scholar 

  10. Bödewadt, U.T.: Die Drehströmungüberfestem Grund. Z. Angew Math. Mech. 20, 241–252 (1940)

    Google Scholar 

  11. Mustafa, M.; Khan, J.A.; Hayat, T.; Alsaedi, A.: On Bödewadt flow and heat transfer of nanofluids over a stretching stationary disk. J. Mol. Liq. 211, 119–125 (2015)

    Google Scholar 

  12. Mustafa, M.: MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model. Int. J. Heat Mass Transf. 108, 1910–1916 (2017)

    Google Scholar 

  13. Nayak, M.K.; Shaw, S.; Chamkha, A.J.: 3D MHD free convective stretched flow of a radiative nanofluid insprired by variable magnetic field. Arab. J. Sci. Eng. 44(2), 1269–1282 (2019)

    Google Scholar 

  14. Dogonchi, A.S.; Armaghani, T.; Chamkha, A.J.; Ganji, D.D.: Natural convection analysis in a cavity with an inclined elliptical heater subject to shape factor of nanoparticles and magnetic field. Arab. J. Sci. Eng (2019). https://doi.org/10.1007/s13369-019-03956-x

    Article  Google Scholar 

  15. Kasaeian, R.D.; Azarian, O.; Mahian, L.Kolsi; Chamkha, Ali J.; Wongwises, S.; Pop, I.: Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int. J. Heat Mass Transf. 107, 778–791 (2017)

    Google Scholar 

  16. Forchheimer, P.: Wasserbewegungdurchboden. Z. Ver. D. Ing. 45, 1782–1788 (1901)

    Google Scholar 

  17. Muskat, M.: The Flow of Homogeneous Fluids Through Porous Media. Edwards, MI (1946)

    Google Scholar 

  18. Seddeek, M.A.: Influence of viscous dissipation and thermophoresis on Darcy–Forchheimer mixed convection in a fluid saturated porous media. J. Colloid Interface Sci. 293, 137–142 (2006)

    Google Scholar 

  19. Shehzad, S.A.; Abbasi, F.M.; Hayat, T.; Alsaedi, A.: Cattaneo–Christov heat flux model for Darcy–Forchheimer flow of an Oldroyd-B fluid with variable conductivity and non-linear convection. J. Mol. Liq. 224, 274–278 (2016)

    Google Scholar 

  20. Bakar, S.A.; Arifin, N.M.; Nazar, R.; Ali, F.M.; Pop, I.: Forced convection boundary layer stagnation-point flow in Darcy–Forchheimer porous medium past a shrinking sheet. Front. Heat Mass Transf. 7, 38 (2016)

    Google Scholar 

  21. Hayat, T.; Muhammad, T.; Al-Mezal, S.; Liao, S.J.: Darcy–Forchheimer flow with variable thermal conductivity and Cattaneo–Christov heat flux. Int. J. Numer. Methods Heat Fluid Flow 26, 2355–2369 (2016)

    Google Scholar 

  22. Chamkha, A.J.; Abbasbandy, S.; Rashad, A.M.; Vajravelu, K.: Radiation effects on mixed convection over a wedge embedded in a porous medium filled with a nanofluid. Transp. Porous Media 91(1), 261–279 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Chamkha, Ali J.; Abbasbandy, S.; Rashad, A.M.; Vajravelu, K.: Radiation effects on mixed convection about a cone embedded in a porous medium filled with a nanofluid. Meccanica 48(2), 275–285 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Rashad, A.M.; Chamkha, A.J.; Abdou, M.M.M.: Mixed convection flow of non-Newtonian fluid from vertical surface saturated in a porous medium filled with a nanofluid. J. Appl. Fluid Mech. 6(2), 301–309 (2013)

    Google Scholar 

  25. Rashad, A.M.; Chamkha, A.J.; Modather, M.: Mixed convection boundary-layer flow of a nanofluid from a horizontal circular cylinder embedded in a porous medium under convective boundary condition. Comput. Fluids 86, 380–386 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Rashad, A.M.; Abbasbandy, S.; Chamkha, A.J.: Non-Darcy natural convection from a vertical cylinder embedded in a thermally stratified and nanofluid-saturated porous media. ASME J. Heat Transf. 136(2), 022503 (2014)

    Google Scholar 

  27. Ramreddy, Ch; Murthy, P.V.S.N.; Rashad, A.M.; Chamkha, A.J.: Numerical study of thermally stratified nanofluid saturated non-Darcy porous medium. Eur. Phys. J.-Plus 129(25), 1–11 (2014)

    Google Scholar 

  28. El-Kabeir, S.M.M.; Chamkha, A.J.; Rashad, A.M.: The effect of thermal radiation on non-darcy free convection from a vertical cylinder embedded in a nanofluid porous media. J. Porous Media 17(3), 269–278 (2014)

    Google Scholar 

  29. El-Kabeir, S.M.M.; Modather, M.; Rashad, A.M.: Effect of thermal radiation on mixed convection flow of a nanofluid about a solid sphere in a saturated porous medium under convective boundary condition. J. Porous Media 18(6), 569–584 (2015)

    Google Scholar 

  30. Khan, M.I.; Hayat, T.; Khan, M.I.; Alsaedi, A.: Activation energy impact in nonlinear radiative stagnation point flow of cross nanofluid. Int. Commu. Heat Mass Transf. 91, 216–224 (2018)

    Google Scholar 

  31. Nayak, M.K.; Shaw, S.; Pandey, V.S.; Chamkha, A.J.: Combined effects of slip and convective boundary condition on MHD 3D stretched flow of nanofluid through porous media inspired by non-linear thermal radiation. Indian J. Phys. 92(8), 1017–1028 (2018)

    Google Scholar 

  32. Nayak, M.K.; Shaw, S.; Chamkha, A.J.: Radiative non linear heat transfer analysis on wire coating from a bath of third-grade fluid. Therm. Sci. Eng. Prog. 5, 97–106 (2018)

    Google Scholar 

  33. Khan, M.I.; Qayyum, S.; Hayat, T.; Khan, M.I.; Khan, T.A.: Entropy generation in radiative motion of tangent hyperbolic nanofluid in presence of activation energy and nonlinear mixed convection. Phys. Lett. A 382, 2017–2026 (2018)

    MathSciNet  Google Scholar 

  34. Khan, M.I.; Hayat, T.; Qayyum, S.; Khan, M.I.; Alsaedi, A.: Entropy generation (irreversibility) associated with flow and heat transport mechanism in Sisko nanomaterial. Phys. Lett. A 382, 2343–2353 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Qayyum, S.; Hayat, T.; Khan, M.I.; Khan, M.I.; Alsaedi, A.: Optimization of entropy generation and dissipative nonlinear radiative Von Karman’s swirling flow with Soret and Dufour effects. J. Mol. Liq. 262, 261–274 (2018)

    Google Scholar 

  36. Afridi, M.I.; Qasim, M.: Entropy generation and heat transfer in boundary layer flow over a thin needle moving in a parallel stream in the presence of nonlinear Rosseland radiation. Int. J. Therm. Sci. 123, 117–128 (2018)

    Google Scholar 

  37. López, A.; Ibáñez, G.; Pantoja, J.; Moreira, J.; Lastres, O.: Entropy generation analysis of MHD nanofluid flow in a porous vertical microchannel with nonlinear thermal radiation, slip flow and convective-radiative boundary conditions. Int. J. Heat Mass Transf. 107, 982–994 (2017)

    Google Scholar 

  38. Bezi, S.; Souayeh, B.; Cheikh, N.B.; Beya, B.B.: Numerical simulation of entropy generation due to unsteady natural convection in a semi-annular enclosure filled with nanofluid. Int. J. Heat Mass Transf. 124, 841–859 (2018)

    Google Scholar 

  39. Hayat, T.; Khan, M.I.; Khan, T.A.; Khan, M.I.; Ahmad, S.; Alsaedi, A.: Entropy generation in Darcy–Forchheimer bidirectional flow of water-based carbon nanotubes with convective boundary conditions. J. Mol. Liq. 265, 629–638 (2018)

    Google Scholar 

  40. Qayyum, S.; Khan, M.I.; Hayat, T.; Alsaedi, A.; Tamoor, M.: Entropy generation in dissipative flow of Williamson fluid between two rotating disks. Int. J. Heat Mass Transf. 127, 933–942 (2018)

    Google Scholar 

  41. Salerian, A.J.: Thermodynamic laws apply to brain function. Med. Hypothesis 74, 270–274 (2012)

    Google Scholar 

  42. Hemalatha, K.; Kameswaran, P.K.; Madhavi, M.V.: Mixed convective heat transfer from a vertical plate embedded in a saturated non-Darcy porous medium with concentration and melting effect. Sadhana 40, 455–465 (2015)

    MathSciNet  Google Scholar 

  43. Seddeek, M.A.; Odda, S.N.; Aki, M.Y.; Abdelmeguid, M.S.: Analytical solution for the effect of radiation on flow of a magneto-micropolarfluid past a continuously moving plate with suction and blowing. Comput. Materi. Sci. 45, 423–428 (2009)

    Google Scholar 

  44. Su, X.; Zheng, L.; Zhang, X.; Zhang, J.: MHD mixed convective heat transfer over permeable stretching wedge with thermal radiation and ohmic heating. Chem. Eng. Sci. 78, 1–8 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Nayak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaw, S., Dogonchi, A.S., Nayak, M.K. et al. Impact of Entropy Generation and Nonlinear Thermal Radiation on Darcy–Forchheimer Flow of MnFe2O4-Casson/Water Nanofluid due to a Rotating Disk: Application to Brain Dynamics. Arab J Sci Eng 45, 5471–5490 (2020). https://doi.org/10.1007/s13369-020-04453-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04453-2

Keywords

Navigation