Skip to main content

Advertisement

Log in

Framing the Activation Energy and Binary Chemical Reaction on CNT’s with Cattaneo–Christov Heat Diffusion on Maxwell Nanofluid in the Presence of Nonlinear Thermal Radiation

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A theoretical model is drafted to inspect the hydromagnetic flow of carbon nanotubes (CNT’s) suspended in a Maxwell nanofluid by means of activation energy with binary chemical reaction over a stretching sheet. Modified Arrhenius function is measured instead of the energy activation. Heat transport phenomena are explored in energy expression through a nonlinear thermal radiation and viscous dissipation, which is incorporated with a novel theory specifically Cattaneo–Christov model of heat diffusion—a sophisticated form of Fourier’s heat flux formula. The flow analysis is reported in attendance of convective slip and suction. Two different kinds of CNT’s (i.e. single and multiple walls) are consistently dispersed in the base fluid (engine oil) to illustrate the fine points of the flow. The governing system of mathematical expressions for the locally similar flow is tackled numerically by Runge–Kutta-based MATLAB bvp4c package. The procured solutions are drawn for different values of pertinent parameters of interest. The temperature of the fluid escalates with the nonlinear thermal radiation. Activation energy boosts up the concentration, and a negative trend is observed for rate of chemical reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

g :

Acceleration due to gravity

\(T_{\infty }\) :

Ambient fluid temperature

C-CHFM:

Cattaneo–Christov heat flux model

\(h_{f}\) :

Convective heat transfer coefficient

Ec :

Eckert number

M :

Magnetic parameter

E :

Non-dimensional activation energy

Pr :

Prandtl number

q r :

Radiative heat flux

Sc :

Schmidt number

S :

Suction/injection parameter

T:

Temperature

\(k_{\text{CNT}}\) :

Thermal conductivities of CNT’s

\(k_{f}\) :

Thermal conductivities of the host fluid

\(k_{nf}\) :

Thermal conductivities of the nanofluid

Rd :

Thermal radiation

B:

Uniform magnetic field strength,

\(U_{w}\) :

Velocity at wall

\(u\) :

Velocity components along the x-axis

\(v\) :

Velocity components along y-axis

A :

Velocity slip factor

\(v_{w}\) :

Wall mass flux

\(T_{w}\) :

Wall temperature

σ :

Non-dimensional chemical reaction rate constant

θ w :

Temperature ratio parameter

\(\mu_{f}\) :

Viscosity of base fluid

\(\mu_{nf}\) :

Viscosity of nanofluids

\(\chi\) :

Nanoparticles fraction

\(\rho_{f}\) :

Density of the base fluid

\(\rho_{\text{CNT}}\) :

Thermal conductivities of CNT’s

\((\rho C_{p} )_{f}\) :

Heat capacity of a fluid

\((\rho C_{p} )_{nf}\) :

Heat capacitance of the nanofluid

\((\rho C_{p} )_{\text{CNT}}\) :

Heat capacity of CNT’s

\(\rho_{nf}\) :

Density of the nanofluid

σ** :

Electric conductivity

\(\alpha_{nf}\) :

Thermal diffusivity of nanofluids

References

  1. Fourier and Jean-Baptiste-Joseph: Theorie Analytique De La Chaleur. Didot, Paris (1822)

    MATH  Google Scholar 

  2. Cattaneo, C.: Sulla conduzionedelcalore, AttiSemin. Mat. Fis. Univ. Modena Reggio Emilia 3, 83–101 (1948)

    Google Scholar 

  3. Christov, C.I.: On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mech. Res. Commun. 36, 481–486 (2009). https://doi.org/10.1016/j.mechrescom.2008.11.003

    Article  MathSciNet  MATH  Google Scholar 

  4. Tibullo, V.; Zampoli, V.: A uniqueness result for the Cattaneo-Christov heat conduction model applied to incompressible fluids. Mech. Res. Commun. 38, 77–79 (2011). https://doi.org/10.1016/j.mechrescom.2010.10.008

    Article  MATH  Google Scholar 

  5. Bala Anki Reddy, P., Suneetha, S.: Impact of Cattaneo–Christov heat flux in the casson fluid flow over a stretching surface with aligned magnetic field and homogeneous - Heterogeneous chemical reaction. Front. Heat Mass Transf. 10, 1–9 (2018). https://doi.org/10.5098/hmt.10.7

  6. Hayat, T.; Imtiaz, M.; Alsaedi, A.; Almezal, S.: On Cattaneo-Christov heat flux in MHD flow of Oldroyd-B fluid with homogeneous-heterogeneous reactions. J. Magn. Magn. Mater. 401, 296–303 (2016). https://doi.org/10.1016/j.jmmm.2015.10.039

    Article  Google Scholar 

  7. Khan, I.; Malik, M.Y.; Hussain, A.; Salahuddin, T.: Effect of homogenous-heterogeneous reactions on MHD Prandtl fluid flow over a stretching sheet. Results Phys. 7, 4226–4231 (2017). https://doi.org/10.1016/j.rinp.2017.10.052

    Article  Google Scholar 

  8. Hayat, T.; Javed, M.; Imtiaz, M.; Alsaedi, A.: Effect of Cattaneo-Christov heat flux on Jeffrey fluid flow with variable thermal conductivity. Results Phys. 8, 341–351 (2018). https://doi.org/10.1016/j.rinp.2017.12.007

    Article  Google Scholar 

  9. Ramzan, M.; Bilal, M.; Chung, J.D.: Influence of homogeneous-heterogeneous reactions on MHD 3D Maxwell fluid flow with Cattaneo-Christov heat flux and convective boundary condition. J. Mol. Liq. 230, 415–422 (2017). https://doi.org/10.1016/j.molliq.2017.01.061

    Article  Google Scholar 

  10. Nadeem, S.; Ahmad, S.; Muhammad, N.; Mustafa, M.T.: Chemically reactive species in the flow of a Maxwell fluid. Results Phys. 7, 2607–2613 (2017). https://doi.org/10.1016/j.rinp.2017.06.017

    Article  Google Scholar 

  11. Acharya, N.; Das, K.; Kundu, P.K.: Cattaneo-Christov intensity of magnetised upper-convected Maxwell nanofluid flow over an inclined stretching sheet: A generalised Fourier and Fick’s perspective. Int. J. Mech. Sci. 130, 167–173 (2017). https://doi.org/10.1016/j.ijmecsci.2017.05.043

    Article  Google Scholar 

  12. Enhancing Thermal Conductivity of Fluids With Nanoparticles: Stephen U. S. Choi, Eastman, J.A. Astropart. Phys. 20, 247–256 (2003). https://doi.org/10.1016/S0927-6505(03)00173-7

    Article  Google Scholar 

  13. Baughman, R.H.; Zakhidov, A.A.; de Heer, W.A.: Carbon Nanotubes — the Route Toward. Science 787, 787–792 (2012). https://doi.org/10.1126/science.1060928

    Article  Google Scholar 

  14. Akbar, N.S.; Khalique, C.M.; Khan, Z.H.: Cattaneo-Christov Heat Flux Model Study for Water-Based CNT Suspended Nanofluid Past a Stretching Surface. Nanofluid Heat Mass Transf. Eng. Probl. (2017). https://doi.org/10.5772/65628

    Article  Google Scholar 

  15. Prabhavathi, B.; Sudarsana Reddy, P.; Bhuvana Vijaya, R.: Heat and mass transfer enhancement of SWCNTs and MWCNTs based Maxwell nanofluid flow over a vertical cone with slip effects. Powder Technol. 340, 253–263 (2018). https://doi.org/10.1016/j.powtec.2018.08.089

    Article  Google Scholar 

  16. Haq, R.U.; Rashid, I.; Khan, Z.H.: Effects of aligned magnetic field and CNTs in two different base fluids over a moving slip surface. J. Mol. Liq. 243, 682–688 (2017). https://doi.org/10.1016/j.molliq.2017.08.084

    Article  Google Scholar 

  17. Ul Haq, R., Nadeem, S., Khan, Z.H., Noor, N.F.M.: Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Phys. B Condens. Matter. 457, 40–47 (2015). https://doi.org/10.1016/j.physb.2014.09.031

    Article  Google Scholar 

  18. Akbar, N.S.; Khan, Z.H.: Effect of variable thermal conductivity and thermal radiation with CNTS suspended nanofluid over a stretching sheet with convective slip boundary conditions: Numerical study. J. Mol. Liq. 222, 279–286 (2016). https://doi.org/10.1016/j.molliq.2016.06.102

    Article  Google Scholar 

  19. Ghadikolaei, S.S.; Hosseinzadeh, K.; Hatami, M.; Ganji, D.D.; Armin, M.: Investigation for squeezing flow of ethylene glycol (C2H6O2) carbon nanotubes (CNTs) in rotating stretching channel with nonlinear thermal radiation. J. Mol. Liq. 263, 10–21 (2018). https://doi.org/10.1016/j.molliq.2018.04.141

    Article  Google Scholar 

  20. Mohammadein, S.A.; Raslan, K.; Abdel-Wahed, M.S.; Abedel-Aal, E.M.: KKL-model of MHD CuO-nanofluid flow over a stagnation point stretching sheet with nonlinear thermal radiation and suction/injection. Results Phys. 10, 194–199 (2018). https://doi.org/10.1016/j.rinp.2018.05.032

    Article  Google Scholar 

  21. Muhammad, S.; Ali, G.; Shah, Z.; Islam, S.; Hussain, S.: The Rotating Flow of Magneto Hydrodynamic Carbon Nanotubes over a Stretching Sheet with the Impact of Non-Linear Thermal Radiation and Heat Generation/Absorption. Appl. Sci. 8, 482 (2018). https://doi.org/10.3390/app8040482

    Article  Google Scholar 

  22. Hayat, T.; Ullah, S.; Khan, M.I.; Alsaedi, A.; Zaigham Zia, Q.M.: Non-Darcy flow of water-based carbon nanotubes with nonlinear radiation and heat generation/absorption. Results Phys. 8, 473–480 (2018). https://doi.org/10.1016/j.rinp.2017.12.035

    Article  Google Scholar 

  23. Bestman, A.R.: Natural convection boundary layer with suction and mass transfer in a porous medium. Int. J. Energy Res. 14, 389–396 (1990). https://doi.org/10.1002/er.4440140403

    Article  Google Scholar 

  24. Shafique, Z.; Mustafa, M.; Mushtaq, A.: Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy. Results Phys. 6, 627–633 (2016). https://doi.org/10.1016/j.rinp.2016.09.006

    Article  Google Scholar 

  25. Pedersen, H.; Elliott, S.D.: Studying chemical vapor deposition processes with theoretical chemistry. Theor. Chem. Acc. 133, 1–10 (2014). https://doi.org/10.1007/s00214-014-1476-7

    Article  Google Scholar 

  26. Lu, D., Ramzan, M., Ahmad, S., Chung, J.D., Farooq, U.: Upshot of binary chemical reaction and activation energy on carbon nanotubes with Cattaneo–Christov heat flux and buoyancy effects. Phys. Fluids. 29, (2017). https://doi.org/10.1063/1.5010171

    Article  Google Scholar 

  27. Dhlamini, M.; Kameswaran, P.K.; Sibanda, P.; Motsa, S.; Mondal, H.: Activation energy and binary chemical reaction effects in mixed convective nanofluid flow with convective boundary conditions. J. Comput. Des. Eng. 6, 149–158 (2019). https://doi.org/10.1016/j.jcde.2018.07.002

    Article  Google Scholar 

  28. Kundu, P.K.; Chakraborty, T.; Das, K.: Framing the Cattaneo-Christov Heat Flux Phenomena on CNT- Based Maxwell Nanofluid Along Stretching Sheet with Multiple Slips. Arab. J. Sci. Eng. 43, 1177–1188 (2018). https://doi.org/10.1007/s13369-017-2786-6

    Article  MATH  Google Scholar 

  29. Pantokratoras, A.: Natural convection along a vertical isothermal plate with linear and non- linear Rosseland thermal radiation. Int. J. Therm. Sci. 84, 151–157 (2014). https://doi.org/10.1016/j.ijthemalsci.2014.05.015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Rashad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subbarayudu, K., Suneetha, S., Bala Anki Reddy, P. et al. Framing the Activation Energy and Binary Chemical Reaction on CNT’s with Cattaneo–Christov Heat Diffusion on Maxwell Nanofluid in the Presence of Nonlinear Thermal Radiation. Arab J Sci Eng 44, 10313–10325 (2019). https://doi.org/10.1007/s13369-019-04173-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04173-2

Keywords

Navigation