Skip to main content

Advertisement

Log in

Geochemical and Petrographic Analyses of the Cambrian Oncoids of the North China Platform: Implications for Their Paleogeography and Paleoenvironment

  • Research Article - Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

After the global extinction event at the end of the Cambrian Epoch 2, widely spread oolitic bank dominated the North China Carbonate Platform during the Cambrian Miaolingian Epoch. To better understand the influence of paleogeographic and paleoenvironmental factors on microbial carbonate particles during this period, carbonate oncoids of the Cambrian Miaolingian Series were selected to reconstruct the paleogeography and paleoenvironment. The study samples were collected from four different sections: Wuhai, Diaoquan, Xiawidian and Sandaogou (from west to east in the North China Platform). Stratigraphic, sedimentological, petrological and geochemical studies including analysis of trace and rare earth elements were carried out to define the stratigraphic location, and morphological and geochemical characteristics of oncoids. Geochemical analysis of oncoids reveals that Er/Nd and Y/Ho values are relatively low, signifying that the formation of oncoids was influenced by terrestrial inputs. Meanwhile, Sr/Cu, Sr/Ba, V/Sc and V/Cr values indicate that the oncoids were developed in a shallow marine environment under oxidizing conditions. The low content of total rare earth elements, low LREE/HREE ratios and LREEs, negative anomalies of Ce/Ce* and Eu/Eu* as well as (La/Sm)N suggest that the oncoids were less influenced by late diagenetic processes. More importantly, morphological differentiations of oncoids in the study area coincide with the changing trend of Y/Ho and Sr/Ba. The results of this study show that oncoids with regular morphology mainly formed at offshore area, while those with irregular shape and preserving rough laminae mostly occurred at nearshore area. From the comparison made between the paleogeographic locations of the study sections, it is proposed that the paleosalinity of marine depositional environment and the transportation distance are the prime controls for morphological differentiation of oncoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Heim, A.: Monographie der Churfirsten-Mattstock-Gruppe. 3. Teil: Stratigraphie der Unteren Kreide und des Jura. Zur Lithogenesis. Beitr. geol. Karte Schweiz. 20, 369–662 (1916)

    Google Scholar 

  2. Flugel, E.: Microfacies of Carbonate Rocks, pp. 128–129. Springer, Heidelberg (2010)

    Google Scholar 

  3. Jones, B.; Renaut, R.W.: Formation of silica oncoids around geysers and hot springs at El Tatio, Chile. Sedimentology 44(2), 287–304 (1997)

    Google Scholar 

  4. Hägele, D.; Leinfelder, R.; Grau, J.; Burmeister, E.-G.; Struck, U.: Oncoids from the river Alz (southern Germany): tiny ecosystems in a phosphorus-limited environment. Palaeogeogr. Palaeoclim. 237(2–4), 378–395 (2006)

    Google Scholar 

  5. Shapiro, R.S.; Fricke, H.C.; Fox, K.: Dinosaur-bearing oncoids from ephemeral lakes of the Lower Cretaceous Cedar Mountain Formation, Utah. Palaios 24(1), 51–58 (2009)

    Google Scholar 

  6. Han, Z.; Zhang, X.; Chi, N.; Han, M.; Woo, J.; Lee, H.S.; Chen, J.: Cambrian oncoids and other microbial-related grains on the North China Platform. Carbonate Evaporites 30(4), 373–386 (2015)

    Google Scholar 

  7. Wang, H.; Xiao, E.Z.: Oncolites in Cambrian Series 3 at Diaoquan section in Lingqiu. Shanxi J. Northeast Pet. Univ. 42(5), 44–53 (2018). (in Chinese with English abstract)

    Google Scholar 

  8. Tucker, M.E.; Wright, V.P.: Carbonate Sedimentology, pp. 1–482. Wiley-Blackwell, Oxford (1990)

    Google Scholar 

  9. Li, X.Z.; Guan, S.R.; Xie, Q.B.; Wang, Z.: The oncoids genesis in the Middle Member of the Guanzhuang Formation of Eocene in Pingyi Basin. Acta Pet. Sin. 16(2), 261–268 (2000). (in Chinese with English abstract)

    Google Scholar 

  10. Schaefer, M.O.; Gutzmer, J.; Beukes, N.J.: Late Paleoproterozoic Mn-rich oncoids: earliest evidence for microbially mediated Mn precipitation. Geology 29(9), 835–838 (2001)

    Google Scholar 

  11. Shi, G.R.; Chen, Z.Q.: Lower Permian oncoids from South China: implications for equatorial sea-level responses to Late Paleozoic Gondwanan glaciation. J. Asian Earth Sci. 26(3–4), 424–436 (2006)

    Google Scholar 

  12. Reolid, M.; Nieto, L.M.: Jurassic Fe–Mn macro-oncoids from pelagic swells of the External Subbetic (Spain): evidences of microbial origin. Geol. Acta 8(2), 151–168 (2010)

    Google Scholar 

  13. Olivier, N.; Cédric, C.; Martin-Garin, B.; Lathuilière, B.; Gaillard, C.; Ferry, S.; Hantzpergue, P.; Geister, J.: Coral-microbialite reefs in pure carbonate versus mixed carbonate–siliciclastic depositional environments: the example of the Pagny-sur-Meuse section (Upper Jurassic, northeastern France). Facies 50(2), 229–255 (2004)

    Google Scholar 

  14. Brigaud, B.; Durlet, C.; Deconinck, J.F.; Vincent, B.; Puceat, E.; Thierry, J.; Trouiller, A.: Facies and climate/environmental changes recorded on a carbonate ramp: a sedimentological and geochemical approach on Middle Jurassic carbonates (Paris Basin, France). Sediment. Geol. 222(3), 181–206 (2009)

    Google Scholar 

  15. Yang, R.; Fan, A.; Han, Z.Z.; Chi, N.J.: Status and prospect of studies on oncoid. Adv. Earth Sci. 26(5), 465–474 (2011). (in Chinese with English abstract)

    Google Scholar 

  16. Zhang, W.H.; Shi, X.Y.; Tang, D.J.; Jiang, G.Q.: Oncoids from lower-middle Cambrian transition of the western north china platform: a study of their ultra-fabrics and biomineralization. Geoscience 28(1), 1–15 (2014). (in Chinese with English abstract)

    Google Scholar 

  17. Zhang, W.H.; Shi, X.Y.; Tang, D.J.; Wang, X.: Mass-occurrence of oncoids in the early-middle Cambrian transition at western margin of north china platform: a response of microbial community to shallow marine anoxia. J. Palaeogeogr. 16(3), 305–318 (2014). (in Chinese with English abstract)

    Google Scholar 

  18. Zhou, G.; Zheng, R.; Zhao, G.: Characteristics, origin and geological significance of Oncoids of Givetian (Middle Devonian) in Ganxi Area, Northwestern Sichuan. J. Jilin Univ. 47(2), 405–417 (2017). (in Chinese with English abstract)

    Google Scholar 

  19. Mei, M.X.; Riaz, M.; Liu, L.; Meng, Q.F.: Oncoids built by photosynthetic biofilms: an example from the Series 2 of Cambrian in the Liaotung Peninsula. J. Palaeogeogr. 21(1), 31–48 (2019). (in Chinese with English abstract)

    Google Scholar 

  20. Védrine, S.; André, S.; Hug, W.: Oncoid growth and distribution controlled by sea-level fluctuations and climate (Late Oxfordian, Swiss Jura Mountains). Facies 53(4), 535–552 (2007)

    Google Scholar 

  21. Védrine, S.: Co-occurrence of the foraminifer Mohlerina basiliensis with Bacinella–Lithocodium oncoids: palaeoenvironmental and palaeoecological implications (Late Oxfordian, Swiss Jura). J. Micropalaeontol. 27(1), 35–44 (2008)

    Google Scholar 

  22. Zhang, Y.Y.; Jun, Y.H.; Po, W.J.; Korla, G.: Oncolites from the Lianglitag Formation (Kaitian, Upper Ordovician), Tazhong, Tarim Block, NW China. Acta Micropalaeontol. Sin. 26(3), 234–242 (2009). (in Chinese with English abstract)

    Google Scholar 

  23. Peryt, T.M.: Classification of coated grains. In: Peryt, T.M. (ed.) Coated Grains. Springer, Berlin (1983)

    Google Scholar 

  24. Zhang, K.M.; Huang, W.H.; Wang, J.H.: Characteristics and environmental significance of Lacustrine Oncolites in Paleogene Guanzhuang Formation in Pingyi Basin, Shandong Province in Eastern China. Acta Sediment. Sin. 31(2), 259–268 (2013). (in Chinese with English abstract)

    Google Scholar 

  25. Zhang, X.Y.; Qi, Y.A.; Dai, M.; Chai, S.: Coupling variation of oncoids and trace fossils in the Zhangxia Formation (Cambrian Miaolingian Series), Dengfeng, western Henan Province. Acta Micropalaeontol. Sin. 32(2), 184–193 (2015). (in Chinese with English abstract)

    Google Scholar 

  26. Dai, M.Y.; Qi, Y.A.; Chang, Y.G.; Wang, M.; Li, D.: Oncoids and their significance from the Second Member of the Mantou Formation (Cambrian Series 3), Dengfeng Area, Henan. Acta Sediment. Sin. 32(3), 410–417 (2014)

    Google Scholar 

  27. Qi, Y.A.; Chai, S.; Zhang, X.Y.; Dai, M.Y.; Wang, M.: Oncoids and their depositional features from the second member of Mantou Formation (Cambrian Series 3), Weihui area, Henan Province. China Sci. Pap. 21(11), 2416–2421 (2016). (in Chinese with English abstract)

    Google Scholar 

  28. Meng, X.H.; Ge, M.; Tucker, M.E.: Sequence Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sediment Geol. 114(1), 189–222 (1997)

    Google Scholar 

  29. Feng, Z.Z.; Peng, Y.M.; Jin, Z.K.; Bao, Z.D.: Lithofacies paleogeography of the Cambrian and Ordovician in China, pp. 112–121. Petroleum Industry Press, Beijing (2004). (In Chinese)

    Google Scholar 

  30. Wang, H.Z.; Shi, X.Y.; Wang, X.L.; Yin, H.F.; Qiao, X.F.: Research on the Sequence Stratigraphy of China, pp. 1–457. Guangdong Science and Technology Press, Guangzhou (2000). (in Chinese)

    Google Scholar 

  31. Haq, B.U.; Schutter, S.R.: A chronology of Paleozoic sea-level changes. Science 322(5898), 64 (2008)

    Google Scholar 

  32. Peng, S.; Babcock, L.; Cooper, R.A.: The Cambrian period. Geol. Time Scale 2012, 437–488 (2012)

    Google Scholar 

  33. Fan, J.X.; Peng, S.C.; Hou, X.D.; Chen, D.Y.: Official website of the International Commission on Stratigraphy and the release of the international chronostratigraphic chart (V2015/01). J. Stratigr. 39(2), 125–134 (2015). (in Chinese with English abstract)

    Google Scholar 

  34. Xiao, E.Z.; Sui, M.Y.; Qin, Y.L.; Latif, K.; Riaz, M.: Sequence-stratigraphy division of Cambrian in Qijiayu section. Pet. Geol. Oilfield Dev. Daqing 36(6), 16–26 (2017). (in Chinese with English abstract)

    Google Scholar 

  35. Xiao, E.Z.; Qin, Y.L.; Riaz, M.; Latif, K.; Yao, L.; Wang, H.: Sequence stratigraphy division of Cambrian in the northeast area of Lvliang mountain: a case study of the Cangerhui section in Wenshui City. J. Northeast Pet. Univ. 41(5), 1–19 (2017). (in Chinese with English abstract)

    Google Scholar 

  36. Latif, K.; Xiao, E.Z.; Riaz, M.; Wang, L.; Khan, M.Y.; Hussein, A.A.; Khan, M.U.: Sequence stratigraphy, sea-level changes and depositional systems in the Cambrian of the North China Platform: a case study of Kouquan section, Shanxi Province, China. J. Himal. Earth Sci. 51(1), 1–16 (2018)

    Google Scholar 

  37. Riaz, M.; Latif, K.; Zafar, T.; Xiao, E.Z.; Ghazi, S.; Wang, L.; Hussein, A.A.A.: Assessment of Cambrian sequence stratigraphic style of the North China Platform exposed in Wuhai division, Inner Mongolia. Himal. Geol. 40(1), 92–102 (2019)

    Google Scholar 

  38. Riaz, M.; Xiao, E.Z.; Latif, K.; Zafar, T.: Sequence-stratigraphic position of oolitic bank of Cambrian in North China Platform: example from the Kelan Section of Shanxi Province. Arab. J. Sci. Eng. 44(1), 391–407 (2019)

    Google Scholar 

  39. Boulila, S.; Galbrun, B.; Miller, K.G.; Pekar, S.F.; Browning, J.L.; Laskar, J.; Wright, J.D.: On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences. Earth Sci. Rev. 109(3–4), 94–112 (2011)

    Google Scholar 

  40. Riding, R.: Calcified cyanobacteria. In: Reitner, J., Thiel, V. (eds.) Encyclopedia of Geobiology. Encyclopedia of Earth Science Series, pp. 211–223. Springer, Berlin (2011)

    Google Scholar 

  41. Latif, K.; Xiao, E.Z.; Riaz, M.; Hussein, A.A.A.: Calcified cyanobacteria fossils from the leiolitic bioherm in the Furongian Changshan Formation, Datong (North China Platform). Carbonate Evaporite. 34, 825–843 (2019)

    Google Scholar 

  42. Xiao, E.Z.; Latif, K.; Riaz, M.; Qing, Y.L.; Wang, H.: Calcified microorganisms bloom in Furongian of the North China Platform: evidence from Microbialitic-Bioherm in Qijiayu section, Hebei. Open Geosci. 10, 250–260 (2018)

    Google Scholar 

  43. Xiao, E.Z.; Sui, M.Y.; Latif, K.: Riaz M (2017c) Study advances and existed problem for the forming mechanism of the microbial dolomite. Pet. Geol. Oilfield Dev. Daqing 36(6), 16–26 (2017). (in Chinese with English abstract)

    Google Scholar 

  44. Challands, T.; Armstrong, H.; Maloney, D.P.; Davies, J.R.; Wilson, D.; Owen, A.W.: Organic-carbon deposition and coastal upwelling at mid-latitude during the Upper Ordovician (Late Katian): a case study from the Welsh Basin, UK. Palaeogeogr. Palaeoclim. 273(3), 395–410 (2009)

    Google Scholar 

  45. Calvert, S.E.; Pedersen, T.F.: Geochemistry of recent oxic and anoxic marine sediments; implications for the geological record. Mar. Geol. 113(1–2), 67–88 (1993)

    Google Scholar 

  46. Jones, B.; Manning, D.C.: Comparison of geochemical indices used for the interpretation of paleo-redox conditions in Ancient mudstones. Chem. Geol. 111(1–4), 111–129 (1994)

    Google Scholar 

  47. Rimmer, S.M.: Geochemical paleoredox indicators in Devonian–Mississippian black shales, Central Appalachian Basin (USA). Chem. Geol. 206, 373–391 (2004)

    Google Scholar 

  48. Fouke, B.W.; Schlager, W.; Vandamme, M.G.; Henderiks, J.; Van Hilten, B.: Basin-to-platform chemostratigraphy and diagenesis of the Early Cretaceous Vercors Carbonate Platform, SE France. Sediment. Geol. 175(1–4), 297–314 (2005)

    Google Scholar 

  49. Tripati, A.K.; Allmon, W.D.; Sampson, D.E.: Possible evidence for a large decrease in seawater strontium/calcium ratios and strontium concentrations during the Cenozoic. Earth Planet. Sci. Lett. 282(1), 122–130 (2009)

    Google Scholar 

  50. Ni, T.; Corcoran, D.L.; Rach, E.A.; Song, S.; Spana, E.P.; Gao, Y.; Zhu, J.: A paired-end sequencing strategy to map the complex landscape of transcription initiation. Nat. Methods 7(7), 521–527 (2010)

    Google Scholar 

  51. Deng, C.; Thomas, K.R.; Capecchi, M.R.: Location of crossovers during gene targeting with insertion and replacement vectors. Am. Soc. Microbiol. 13(4), 2134–2140 (1993)

    Google Scholar 

  52. Chen, J.; Liu, G.; Jiang, M.; Chou, C.L.; Li, H.; Wu, B.; Zheng, L.; Jiang, D.: Geochemistry of environmentally sensitive trace elements in Permian coals from the Huainan coalfield, Anhui, China. Int. J. Coal Geol. 88(1), 41–54 (2011)

    Google Scholar 

  53. Dill, H.G.; Altangerel, S.; Bulgamaa, J.; Hongor, O.; Khishigsuren, S.; Majigsuren, Y.; Myagmarsuren, S.; Heunisch, C.: The Baganuur coal deposit, Mongolia: depositional environments and paleoecology of a Lower Cretaceous coal-bearing intermontane basin in Eastern Asia. Int. J. Coal Geol. 60(2), 197–236 (2004)

    Google Scholar 

  54. Wignall, P.B.: Black Shales. Oxford University Press, Oxford (1994)

    Google Scholar 

  55. Bellanca, A.; Masetti, D.; Neri, R.: Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section (Venetian region, northern Italy): assessing REE sensitivity to environmental changes. Chem. Geol. 141, 141–152 (1997)

    Google Scholar 

  56. Haskin, L.A.; Gehl, M.A.: The rare earth distribution in sediment. J. Geophys. Res. 67, 2537–2541 (1962)

    Google Scholar 

  57. Wang, Z.G.; Yu, X.Y.; Zhao, Z.H.: Progress in geochemistry of rare earth elements abroad. Bull. Mineral. Pet. Geochem. 1, 1–4 (1986). (in Chinese)

    Google Scholar 

  58. McLennan, S.M.: Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Mineral. Soc. Am. 21, 169–200 (1989)

    Google Scholar 

  59. Shields, G.; Stille, P.D.: Diagenetic constrains on the use of cerium anomalies as paleoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chem. Geol. 175, 29–48 (2001)

    Google Scholar 

  60. Xu, X.; Wang, K.; Zhang, K.; Ma, Q.; Xing, L.; Sullivan, C.; Hu, D.; Cheng, S.; Wang, S.: A gigantic feathered dinosaur from the Lower Cretaceous of China. Nature 484(7392), 92–95 (2012)

    Google Scholar 

  61. Nozaki, Y.: A fresh look at element distribution the North Pacific Ocean. EOS Trans. AGU 78, 221 (1997)

    Google Scholar 

  62. Nozaki, Y.; Alibo, D.S.: Importance of vertical geochemical processes in controlling the oceanic profiles of dissolved rare earth elements in the northeastern Indian Ocean. Earth Planet. Sci. Lett. 205(3–4), 155–172 (2003)

    Google Scholar 

  63. Hu, J.J.; Li, Q.; Li, J.; Kong, X.; Liu, Y.: Geochemical characteristics and its application to depositional environment analysis of Permian Carbonates in Jiaomuri Area, Qiangtang Basin. Geol. J. China Univ. 20(4), 520–527 (2014). (in Chinese with English abstract)

    Google Scholar 

  64. Bau, M.; Koschinsky, A.; Dulski, P.; Hein, J.R.: Comparison of partitioning behaviors of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochim. Cosmochim. Acta 60, 1709–1725 (1996)

    Google Scholar 

  65. Nagarajan, R.; Madhavaraju, J.; Armstrong-Altrin, J.S.; Nagendra, R.: Geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima Basin, Karnataka, southern India. Geosci. J. 15(1), 9–25 (2011)

    Google Scholar 

  66. Webb, G.E.; Kamber, B.S.: Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim. Cosmochim. Acta 64, 1557–1565 (2000)

    Google Scholar 

  67. Gromet, L.P.; Haskin, L.A.; Korotev, R.L.; Dymek, R.F.: The “North American Shale Composite”: its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta 48(12), 2469–2482 (1984)

    Google Scholar 

  68. Taylor, S.R.; McLennan, S.M.: The Continental Crust: Its Composition and Evolution. Blackwell, Oxford (1985)

    Google Scholar 

  69. Tanaka, K.; Miura, N.; Asahara, Y.; Kawabe, I.: Rare earth element and strontium isotopic study of seamount—type limestone in Mesozoic accretionary complex of Southern Chichibu Terrane, central Japan: implication for incorporation process of seawater REE into limestones. Geochem. J. 37, l63–180 (2003)

    Google Scholar 

  70. Nothdurft, L.D.; Webb, G.E.; Kamber, B.S.: Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones. Geochim. Cosmochim. Acta 68(2), 263–283 (2004)

    Google Scholar 

  71. Baar, H.J.W.; German, C.R.; Elderfield, H.; Gaans, P.V.: Rare earth element distributions in anoxic waters of the Cariaco trench. Geochim. Cosmochim. Acta 52, 1203–1219 (1988)

    Google Scholar 

  72. Yuhang, W.; Yuanyuan, Z.; Jiandong, H.; Huyue, S.; Yong, D.; Zhe, L.: Application of rare earth elements of the marine carbonate rocks in the paleoenvironmental researches. Advance Earth. Sci. 33(9), 922–932 (2018). (in Chinese with English abstract)

    Google Scholar 

  73. Piper, D.Z.: Rare earth elements in the sedimentary cycle: a summary. Chem. Geol. 14(4), 285–304 (1974)

    Google Scholar 

  74. Elderfield, H.; Greaves, M.J.: The rare earth elements in seawater. Nature 296, 214–219 (1982)

    Google Scholar 

  75. German, C.R.; Elderfield, H.: Rare earth elements in the NW Indian Ocean. Geochim. Cosmochim. Acta 54, 1929–1940 (1990)

    Google Scholar 

  76. Michard, A.; Albarede, F.: The REE content of some hydrothermal fluids. Chem. Geol. 55(1–2), 21–60 (1986)

    Google Scholar 

  77. Kamber, B.S.; Bolhar, R.; Webb, G.E.: Geochemistry of late Archaean stromatolites from Zimbabwe: evidence for microbial life in restricted epicontinental seas. Precambrian Res. 132, 379–399 (2004)

    Google Scholar 

  78. Bau, M.; Dulski, P.: Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res. 79(1–2), 37–55 (1996)

    Google Scholar 

  79. Sholkovitz, E.R.; Landing, W.M.; Lewis, B.L.: Ocean particle chemistry: the fractionation of rare earth elements between suspended particles and seawater. Geochim. Cosmochim. Acta 58, 1567–1580 (1994)

    Google Scholar 

  80. Krumbein, W.E.; Cohen, Y.; Shilo, M.: Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats. Limnol. Oceanogr. 22(4), 635–656 (1977)

    Google Scholar 

  81. Gerdes, G.; Dunajtschik-Piewak, K.; Riege, H.; Taher, A.G.; Krumbein, W.E.; Reineck, H.E.: Structural diversity of biogenic carbonate particles in microbial mats. Sedimentology 41, 1273–1294 (1994)

    Google Scholar 

  82. Baumgartner, L.K.; Reid, R.P.; Dupraz, C.; Decho, A.W.; Buckley, D.H.; Spear, J.R.; Przekop, K.M.; Visscher, P.T.: Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment. Geol. 185(3), 131–145 (2006)

    Google Scholar 

  83. Mei, M.; Yang, F.; Gao, J.; Meng, Q.F.: Glauconites formed in the high-energy shallow-marine environment of the Late Mesoproterozoic: case study from Tieling Formation at Jixian Section in Tianjin, North China. Earth Sci. Front. 15(4), 146–158 (2008)

    Google Scholar 

  84. Gallagher, M.; Turner, E.C.; Kamber, B.S.: In situ trace metal analysis of Neoarchaean–Ordovician shallow-marine microbial-carbonate-hosted pyrites. Geobiology 13(4), 316–339 (2015)

    Google Scholar 

  85. Canfield, D.E.: A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998)

    Google Scholar 

  86. Bratton, J.F.; Berry, W.B.N.; Morrow, J.R.: Anoxia pre-dates Frasnian–Famennian boundary mass extinction horizon in the Great Basin, USA. Palaeogeogr. Palaeoclim. 154, 275–292 (1999)

    Google Scholar 

  87. Turgeon, S.; Brumsack, H.: Anoxic versus dysoxic events reflected in sediment geochemistry during the Cenomanian–Turonian Boundary Event (Cretaceous) in the Umbria–Marche Basin of central Italy. Chem. Geol. 234(3), 321–339 (2006)

    Google Scholar 

  88. Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A.: Trace metals as paleoredox and paleoproductivity proxies: an update. Chem. Geol. 232(1–2), 12–32 (2006)

    Google Scholar 

  89. Li, S.Y.; Jin, F.Q.; Wang, D.X.: Geochemical characteristics of carbonate rock diagenesis. Exper. Petrol. Geol. 17(1), 55–61 (1995). (in Chinese with English abstract)

    Google Scholar 

  90. Chen, S.; Fu, X.H.; Gui, H.R.; Sun, L.H.: Geochemical characteristics of trace elements in limestone of the Neoproterozoic Wangshan Formation in northern Anhui Province. J. Palaeogeogr. 14(6), 813–820 (2012)

    Google Scholar 

  91. Ma, Y.S.; Mei, M.X.; Zhou, R.X.; Yang, W.: Forming patterns for the oolitic bank within the sequence-stratigraphic framework: an example from the Cambrian Series 3 at the Xiaweidian section in the western suburb of Beijing. Acta Pet. Sin. 33(4), 1021–1036 (2017). (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Prof. Mingxiang Mei, Prof. Yinhui Zuo and Dr. Yangbo Lu for the critical reviews on the earlier version of the manuscript. We are also thankful for the generous financial support from the National Natural Science Foundation of China (Grant Nos. 41472090, 40472065) and the timely help from Liying Zhao, Xinjing Li and Hang Jiao of Research Institute of Petroleum Exploration and Development, CNPC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Riaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, E., Zafar, T., Latif, K. et al. Geochemical and Petrographic Analyses of the Cambrian Oncoids of the North China Platform: Implications for Their Paleogeography and Paleoenvironment. Arab J Sci Eng 45, 307–325 (2020). https://doi.org/10.1007/s13369-019-04146-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04146-5

Keywords

Navigation