Skip to main content
Log in

CFD Study of Variable Property Effects on Laminar Micro-convective Heat Transfer

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Compact heat exchangers are of great technological importance in many industries such as automotive, submarine and spacecraft industry. Micro-channel cooling is an area which is providing a new platform for the development of these compact heat exchange devices. Micro-channel flows and heat transfer characteristics are different from what is usually observed in macrochannel flows. In the present work, computational fluid dynamics is used as a tool to study the influence of variable thermophysical properties on the Nusselt number, skin friction and pressure drop for different channel diameter, fluid inlet velocities, and heat fluxes. The Nusselt number and pressure drop is found to be higher for variable properties as compared to constant properties for an increase in diameters, inlet velocities, and heat fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(C_\mathrm{f}\) :

Skin friction coefficient (–)

\(C_{p}(T)\) :

Temperature-dependent specific heat capacity (J kg\(^{-1}\) K\(^{-1}\))

D :

Pipe diameter (m)

\(f_\mathrm{D}\) :

Darcy friction factor (–)

h :

Heat transfer coefficient (W m\(^{-2}\) K\(^{-1}\))

k(T) :

Temperature-dependent thermal conductivity (W m\(^{-1}\) K\(^{-1}\))

L :

Length of micro-tube (m)

\(q_\mathrm{w}\) :

Constant wall heat flux (W cm\(^{-2}\))

rz :

Radial and axial cylindrical coordinate (m)

R :

Pipe radius (m)

Re :

Reynolds number (–)

\(T_\mathrm{m}\) :

Bulk mean temperature (K)

\(T_\mathrm{w}\) :

Wall temperature (K)

\(T_\mathrm{in}\) :

Inlet temperature (K)

\(T_\mathrm{out}\) :

Outlet temperature (K)

\(u_\mathrm{in}\) :

Inlet velocity (ms\(^{-1}\))

\(u_\mathrm{m}\) :

Bulk mean velocity (ms\(^{-1}\))

\({\rho (T)}\) :

Temperature-dependent density (Kg m\(^{-3}\))

\({\mu (T)}\) :

Temperature-dependent viscosity (Ns m\(^{-2}\))

\({\mu }\) :

Micrometers (\(= 10^{-6}\) m)

CP :

Constant properties

e :

Exit

VP :

Variable properties

m :

Mean value

w :

Wall

in :

Inlet

References

  1. Holman, J.P.: Heat Transfer, International edn. McGraw-Hill, New York (2009)

    Google Scholar 

  2. Bergman, T.L.; Incropera, F.P.; DeWitt, D.P.; Lavine, A.S.: Fundamentals of Heat and Mass Transfer. Wiley, New York (2011)

    Google Scholar 

  3. Kays, W.M.: Convective Heat and Mass transfer. Tata McGraw-Hill Education, New York (2012)

    Google Scholar 

  4. Tuckerman, D.B.; Pease, R.F.W.: High-performance heat sinking for VLSI. IEEE Electron Device Lett. 2(5), 126–129 (1981)

    Article  Google Scholar 

  5. Zhang, X.; Arie, M.A.; Deisenroth, D.C.; Shooshtari, A.; Dessiatoun, S.; Ohadi, M.: Impact of additive manufacturing on performance enhancement of heat exchangers: a case study on an air-to-air heat exchanger for high temperature applications. In: IX Minsk International Seminar on Heat Pipes, Heat Pumps, Refrigerators, Power Sources, Minsk, Belarus, 7–10 (2015)

  6. Agrawal, A.: A comprehensive review on gas flow in microchannels. Int. J. Micro-Nano Scale Transp. 2(1), 1–40 (2011)

    Article  Google Scholar 

  7. Asadi, M.; Xie, G.; Sunden, B.: A review of heat transfer and pressure drop characteristics of single and two-phase microchannels. Int. J. Heat Mass Transfer 79, 34–53 (2014)

    Article  Google Scholar 

  8. Dirker, J.; Meyer, J.P.; Garach, D.V.: Inlet flow effects in micro-channels in the laminar and transitional regimes on single-phase heat transfer coefficients and friction factors. Int. J. Heat Mass Transfer 77, 612–626 (2014)

    Article  Google Scholar 

  9. Hetsroni, G.; Mosyak, A.; Pogrebnyak, E.; Yarin, L.P.: Heat transfer in micro-channels: comparison of experiments with theory and numerical results. Int. J. Heat Mass Transfer 48(25), 5580–5601 (2005)

    Article  Google Scholar 

  10. Kumar, V.; Paraschivoiu, M.; Nigam, K.D.P.: Single-phase fluid flow and mixing in microchannels. Chem. Eng. Sci. 66(7), 1329–1373 (2011)

    Article  Google Scholar 

  11. Kohl, M.J.; Abdel-Khalik, S.I.; Jeter, S.M.; Sadowski, D.L.: An experimental investigation of microchannel flow with internal pressure measurements. Int. J. Heat Mass Transfer 48(8), 1518–1533 (2005)

    Article  Google Scholar 

  12. Yener, Y.; Kakaç, S.; Avelino, M.; Okutucu, T.: Single-Phase Forced Convection in Microchannels. In: Kakaç, S., Vasiliev, L., Bayazitoğlu, Y., Yener, Y. (eds.) Microscale Heat Transfer Fundamentals and Applications, vol. 193, pp. 1–24. NATO Science Series II: Mathematics, Physics and Chemistry Springer, Dordrecht (2005)

  13. Palm, B.: Heat transfer in microchannels. Microscale Thermophys. Eng. 5(3), 155–175 (2001)

    Article  Google Scholar 

  14. Morini, G.L.: Single-phase convective heat transfer in microchannels: a review of experimental results. Int. J. Therm. Sci. 43(7), 631–651 (2004)

    Article  Google Scholar 

  15. Dixit, T.; Ghosh, I.: Review of micro- and mini-channel heat sinks and heat exchangers for single phase fluids. Renew. Sustain. Energy Rev. 41, 1298–1311 (2015)

    Article  Google Scholar 

  16. Herwig, H.; Mahulikar, S.P.: Variable property effects in single-phase incompressible flows through micro-channels. Int. J. Therm. Sci. 45(10), 977–981 (2006)

    Article  Google Scholar 

  17. Sharipov, F.; Kalempa, D.: Velocity slip and temperature jump coefficients for gaseous mixtures. I. Viscous slip coefficient. Phys. Fluids 15(6), 1800–1806 (2003)

    Article  MATH  Google Scholar 

  18. Tiselj, I.; Hetsroni, G.; Mavko, B.; Mosyak, A.; Pogrebnyak, E.; Segal, Z.: Effect of axial conduction on the heat transfer in micro-channels. Int. J. Heat Mass Transfer 47(12–13), 2551–2565 (2004)

    Article  Google Scholar 

  19. Mahulikar, S.P.; Herwig, H.; Hausner, O.; Kock, F.: Laminar gas micro-flow convection characteristics due to steep density gradients. EPL (Europhys. Lett.) 68(6), 811–817 (2004)

    Article  Google Scholar 

  20. Mahulikar, S.P.; Herwig, H.: Theoretical investigation of scaling effects from macro-to-microscale laminar convection due to variations in incompressible fluid properties. Appl. Phys. Lett. 86(1), 014105 (2005)

    Article  Google Scholar 

  21. Gulhane, N.P.; Mahulikar, S.P.: Variations in gas properties in laminar micro-convection with entrance effect. Int. J. Heat Mass Transfer 52(7–8), 1980–1990 (2009)

    Article  MATH  Google Scholar 

  22. Peng, X.F.; Wang, B.X.; Peterson, G.P.; Ma, H.B.: Experimental investigation of heat transfer in flat plates with rectangular microchannels. Int. J. Heat Mass Transfer 38(1), 127–137 (1995)

    Article  Google Scholar 

  23. Adams, T.M.; Abdel-Khalik, S.I.; Jeter, S.M.; Qureshi, Z.H.: An experimental investigation of single-phase forced convection in microchannels. Int. J. Heat Mass Transfer 41(6–7), 851–857 (1998)

    Article  Google Scholar 

  24. Wu, P.; Little, W.A.: Measurement of the heat transfer characteristics of gas flow in fine channel heat exchangers used for microminiature refrigerators. Cryogenics 24(8), 415–420 (1984)

    Article  Google Scholar 

  25. Aydın, O.; Avcı, M.: Heat and fluid flow characteristics of gases in micropipes. Int. J. Heat Mass Transfer 49(9–10), 1723–1730 (2006)

    Article  MATH  Google Scholar 

  26. Shah, R.K.; London, A.L.: Thermal boundary conditions and some solutions for laminar duct flow forced convection. J. Heat Transfer 96(2), 159–165 (1974)

    Article  Google Scholar 

  27. Mahulikar, S.P.; Herwig, H.: Physical effects in pure continuum-based laminar micro-convection due to variation of gas properties. J. Phys. D Appl. Phys. 39(18), 4116–4123 (2006)

    Article  Google Scholar 

  28. Pasha, Amjad Ali; Mushtaq, A.; Juhany, Khalid A.: Numerical study of heat transfer of water flow through pipe with property variations. Athens J. Technol. Eng. 4(4), 359–385 (2017)

    Google Scholar 

  29. Gulhane, N.P.; Mahulikar, S.P.: Numerical study of compressible convective heat transfer with variations in all fluid properties. Int. J. Therm. Sci. 49(5), 786–796 (2010)

    Article  Google Scholar 

  30. Rohsenow, W.M.; Hartnett J. R.; Cho Y. I.: Basic concepts of heat transfer, chap. 1. Handbook of heat transfer. In: Hartnett, J.P. (ed.) McGraw-Hill, New York (1998)

  31. Patankar, S.: Numerical Heat Transfer and Fluid Flow. Taylor Francis Publishing, Boca Raton (1980)

    MATH  Google Scholar 

  32. Grigull, U.; Tratz, H.: Thermischereinlauf in Ausgebildeter Laminarerrohrströmung. Int. J. Heat Mass Transfer 8(5), 669–678 (1965)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the High-Performance Aziz Supercomputing center team (http://hpc.kau.edu.sa) and Dean of the Faculty of Engineering, King Abdulaziz University, Jeddah for providing necessary facilities to carry out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Ali Pasha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasha, A.A., Abdul Raheem, M., Islam, N. et al. CFD Study of Variable Property Effects on Laminar Micro-convective Heat Transfer. Arab J Sci Eng 44, 5961–5972 (2019). https://doi.org/10.1007/s13369-019-03797-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03797-8

Keywords

Navigation