Skip to main content

Advertisement

Log in

Sequence-Stratigraphic Position of Oolitic Bank of Cambrian in North China Platform: Example from the Kelan Section of Shanxi Province

  • Research Article - Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

According to the recent chronostratigraphic division of Cambrian, the Cambrian strata in the Kelan section can be subdivided into seven third-order sequences (\(\hbox {DS}_{1}{-}\hbox {DS}_{7})\) based on cyclicity in sedimentary facies stacking patterns. The calcareous mudstone forming condensed section, micritic limestone comprising deep to middle ramp facies and the oolitic-grain bank facies in Series 3 and Furongian series represent the basic depositional fabric of Cambrian in northwestern part of Shanxi Province, North China Platform. These massive oolitic grainstones demonstrate that the oolitic-grain bank facies constitute the late-highstand systems tract or forced-regressive systems tract. The grains occupy upper parts of the third-order depositional sequences in response to relative sea-level fall. Furthermore, this forming pattern of oolitic-grain bank facies does not follow the standard model of sequence stratigraphy, in which deposition is believed to occur principally during sea-level rise, rather a continuous erosional unconformity develops during sea-level fall. Moreover, the microscopic analysis of oolitic grainstone shows the development of concentric and radial, rounded or elliptical, with or without nuclei, monocrystalline or polycrystalline, Girvanella or micritic ooids. The occurrence of diversified ooids in varying proportions provides a new dimension for studying evolution of the oolitic-grain bank in the North China Platform. The forming pattern of oolitic-grain bank controlled by their sequence-stratigraphic position in the Kelan section in the Shanxi province provides an important clue and a research direction for the regional correlation, as well as the paleogeographical reconstruction of the Cambrian Series 3 and Furongian series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diaz, M.R.; Eberli, G.P.; Blackwelder, P.; Phillips, B.; Swart, P.K.: Microbially mediated organomineralization in the formation of ooids. Geol. Soc. Am. 45(9), 771–774 (2017)

    Google Scholar 

  2. O’Reilly, S.S.; Mariotti, G.; Winter, A.R.; Newman, S.A.; Matys, E.D.; McDermott, F.; Pruss, S.B.; Bosak, T.; Summons, R.E.; Klepac-Ceraj, V.: Molecular biosignatures reveal common benthic microbial sources of organic matter in ooids and grapestones from Pigeon Cay. The Bahamas. Geobiology 15, 112–130 (2017)

    Article  Google Scholar 

  3. Newell, N.; Imbrie, J.; Purdy, E.G.; Thurber, D.L.: Organism communities and bottom facies, Great Bahama Bank. B. Am. Mus. Nat. Hist. 117(4), 181–228 (1959)

    Google Scholar 

  4. Preto, N.; Breda, A.; Dal Corso, J.; Franceschi, M.; Rocca, F.; Spada, C.; Roghi, G.: The Loppio oolitic limestone (Early Jurassic, Southern Alps): a prograding oolitic body with high original porosity originated by a carbonate platform crisis and recovery. Mar. Petrol. Geol. 79, 394–411 (2017)

    Article  Google Scholar 

  5. Weissert, H.; Lini, A.; Follmi, K.B.; Kuhn, O.: Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: a possible link? Palaeogeogr. Palaeocl. 137, 189–203 (1998)

    Article  Google Scholar 

  6. Morettini, E.; Santantonio, M.; Bartolini, A.; Cecca, F.; Baumgartner, P.; Hunziker, J.: Carbon isotope stratigraphy and carbonate production during the early-middle Jurassic: examples from the Umbria–Marche–Sabina Apennines (central Italy). Palaeogeogr. Palaeocl. 184, 251–273 (2002)

    Article  Google Scholar 

  7. Schlager, W.: Carbonate sedimentology and sequence stratigraphy. SEPM Concepts. Sedimentol. Paleontol. 8, 1–198 (2005)

    Google Scholar 

  8. Bosellini, A.; Morsilli, M.; Neri, C.: Long-term event stratigraphy of the Apulia platform margin (Upper Jurassic to Eocene, Gargano, Southern Italy). J. Sediment. Res. 69, 1241–1252 (1999)

    Article  Google Scholar 

  9. Gattolin, G.; Preto, N.; Breda, A.; Franceschi, M.; Isotton, M.; Gianolla, P.: Sequence stratigraphy after the demise of a high-relief carbonate platform (Carnian of the Dolomites): sea-level and climate disentangled. Palaeogeogr. Palaeocl. 423, 1–17 (2015)

    Article  Google Scholar 

  10. Follmi, K.B.; Gainon, F.: Demise of the northern Tethyan Urgonian carbonate platform and subsequent transition towards pelagic conditions: the sedimentary record of the Col de la Plaine Morte area. Central Switzerland. Sediment. Geol. 205, 142–159 (2008)

    Article  Google Scholar 

  11. Jiang, G.; Christie-Blick, N.; Kaufman, A.J.; Banerjee, D.M.; Rai, V.: Carbonate platform growth and cyclicity at a terminal Proterozoic passive margin, Infra Krol Formation and Krol Group, Lesser Himalaya. India. Sedimentology 50, 921–952 (2003)

    Article  Google Scholar 

  12. Adams, E.W.; Schroder, S.; Grotzinger, J.P.; McCormick, D.S.: Digital reconstruction and stratigraphic evolution of a microbial-dominated, isolated carbonate platform (terminal Proterozoic, Nama Group, Namibia). J. Sediment. Res. 74, 479–497 (2004)

    Article  Google Scholar 

  13. Batten, K.L.; Narbonne, G.M.; James, N.P.: Paleoenvironments and growth of early Neoproterozoic calcimicrobial reefs: platformal Little Dal Group, northwestern Canada. Precambrian Res. 133, 249–269 (2004)

    Article  Google Scholar 

  14. DiBenedetto, S.; Grotzinger, J.: Geomorphic evolution of a storm-dominated carbonate ramp (c. 549 Ma), Nama Group, Namibia. Geol. Mag. 142, 583–604 (2005)

    Article  Google Scholar 

  15. Liu, W.; Zhang, X.L.: Girvanella-coated grains from Cambrian oolitic limestone. Facies 58(4), 779–787 (2012)

    Article  Google Scholar 

  16. Sturesson, U.: Ooids and oncoids in a Middle Cambrian sandstone from Narke. Sweden. GFF 110, 143–156 (1988)

    Google Scholar 

  17. Ma, Y.S.; Mei, M.X.; Zhou, R.X.; Yang, W.: Forming patterns for the oolitic bank within the sequence-stratigraphic framework: an example from the cambrian series 3 at the Xiaweidian section in the Western Suburb of Beijing. Acta Petrol. Sin. 33(4), 1021–1036 (2017). (in Chinese with English abstract)

    Google Scholar 

  18. Gill, B.C.; Lyons, T.W.; Young, S.A.; Kump, L.R.; Knoll, A.H.; Saltzman, M.R.: Geochemical evidence for widespread euxinia in the later Cambrian ocean. Nature 469, 80–83 (2011)

    Article  Google Scholar 

  19. Saltzman, M.R.; Ripperdan, R.L.; Brasier, M.D.; Lohmann, K.C.; Robison, R.A.; Chang, W.T.; Peng, S.; Ergaliev, E.K.; Runnegar, B.: A global carbon isotope excursion (SPICE) during the late cambrian: relation to trilobite extinctions, organic-matter burial and sea-level. Palaeogeogr. Palaeocl. 162, 211–223 (2000)

    Article  Google Scholar 

  20. Sepkoski, J.J.: Biodiversity: past, present, and future. J. Paleontol. 71(4), 533–539 (1997)

    Article  Google Scholar 

  21. Wang, C.S.; Fan, K.Q.; Yin, Z.G.: Features of ooids in the middle cambrian Zhangxia formation in the Western Hills, Beijing, and their environmental significance. Bull. Chin. Acad. Geol. Sci. 22, 39–55 (1990). (in Chinese)

    Google Scholar 

  22. Ma, Y.S.: Late Cambrian sedimentary cycles in the north part of the North China platform. Geol. Rev. 40(2), 165–172 (1994). (in Chinese with English abstract)

    Google Scholar 

  23. Mei, M.X.: The third-order carbonate cyclic sequences of drowned unconformity type with discussion on "condensation" of carbonate platforms. Sediment. Facies Paleogeogr. 16(6), 24–33 (1996). (in Chinese with English abstract)

    Google Scholar 

  24. Mei, M.X.; Ma, Y.S.; Mei, S.L.; Hu, J.Z.: Sequence-stratigraphic framework and carbonate-platform evolution for the Cambrian of the North-China Platform. Geoscience 11(3), 275–282 (1997). (in Chinese with English abstract)

    Google Scholar 

  25. Sha, Q.: A Study on shoal facies deposit. J. Palaeogeogr. 1(3), 8–12 (1999). (in Chinese with English abstract)

    Google Scholar 

  26. Chen, X.W.; Mu, C.L.; Ge, X.Y.; Kang, J.W.; Zhou, K.K.: Distributing characteristics and controlling factors for oolitic shoal of the third series of Cambrian in North China. J. Oil Gas Technol. 34(11), 8–14 (2012). (in Chinese with English abstract)

    Google Scholar 

  27. Dai, M.Y.; Qi, Y.A.; Chen, Y.; Li, D.: Giant ooids and their genetic analysis from the Zhangxia formation of Cambrian series 3 in Mianchi area, western Henan Province. J. Palaeogeogr. 16(5), 726–734 (2014). (in Chinese with English abstract)

    Google Scholar 

  28. Xing, Y.L.; Feng, L.Q.: A study on ooids in limestones of the Cambrian Xuzhuang formation at Xiaweidian outcrop in Western Hill of Beijing. J. Palaeogeogr. 17(4), 517–528 (2015). (in Chinese with English abstract)

    Google Scholar 

  29. Meng, X.H.; Ge, M.; Tucker, M.E.: Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sediment. Geol. 114(1–4), 189–222 (1997)

    Article  Google Scholar 

  30. Myrow, P.M.; Chen, J.; Snyder, Z.; Leslie, S.; Fike, D.; Fanning, M.; Yuan, J.; Tang, P.: Depositional history, tectonics, and provenance of the Cambrian-Ordovician succession in the western margin of the North China block. Geol. Soc. Am. Bull. 127, 1174–1193 (2015)

    Article  Google Scholar 

  31. Xiao, E.; Sui, M.; Qin, Y.; Latif, K.; Riaz, M.; Wang, H.: Cambrian sequence stratigraphic division for Qijiayu section in Hebei Laiyuan. Pet. Geol. Oilfield Dev. Daqing 36(6), 16–25 (2017). (in Chinese with English abstract)

    Google Scholar 

  32. Xiao, E.; Qin, Y.; Riaz, M.; Latif, K.; Yao, L.; Wang, H.: Sequence stratigraphy division of Cambrian in the northeast area of Luliang mountain: A case study of the Cangerhui section in Wenshui City. J. Northeast Petrol. Univ. 14(5), 43–53 (2017). (in Chinese with English abstract)

    Google Scholar 

  33. Schlager, W.: Type 3 sequence boundaries. In: Harris, P.M., Saller, A.H., Simo, J.A. (eds.) Advances in Carbonate Sequence Stratigraphy: Application to Reservoirs, Outcrop, and Models, pp. 35–46. SEPM Special Publication (1999)

  34. Schlager, W.: Drowning unconformities on carbonate platforms. In: Crevello, P.D., Wilson, J.L., Sarg, J.F., Read, J.F. (eds.) Controls on Carbonate Platform and Basin Development, pp. 15–25. SEPM Special Publication (1989)

  35. Mei, M.X.; Yang, X.D.: Forced regression and forced regressive wedge system tract: revision on traditional exxon model of sequence stratigraphy. Geol. Sci. Technol. Inf. 19(2), 17–21 (2000). (in Chinese with English abstract)

    MathSciNet  Google Scholar 

  36. Samanta, P.; Mukhopadhyay, S.; Eriksson, P.G.: Forced regressive wedge in the Mesoproterozoic Koldaha shale, Vindhyan basin, Son Valley, central India. Mar. Petrol. Geol. 71, 329–343 (2016)

    Article  Google Scholar 

  37. Schlager, W.; Warrlich, G.: Record of sea-level fall in tropical carbonates. Basin Res. 21(2), 209–224 (2009)

    Article  Google Scholar 

  38. Wilson, J.L.: Carbonate Facies in Geologic History, p. 471. Springer, New York (1975)

    Book  Google Scholar 

  39. Mei, M.X.: Depositional trends and sequence-stratigraphic successions under the Cambrian second-order transgressive setting in the North China Platform: A case study of the Xiaweidian section in the western suburb of Beijing. Geol. China 38(2), 317–337 (2011). (in Chinese with English abstract)

    Google Scholar 

  40. Scholle, P.A.; Ulmer-Scholle, D.S.: A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis. AAPG Memoir 77, 474 (2003)

    Google Scholar 

  41. Zecchin, M.: “Discussion” Towards the standardization of sequence stratigraphy: is the parasequence concept to be redefined or abandoned? Earth Sci. Rev 102, 117–119 (2010)

    Article  Google Scholar 

  42. Hunt, D.; Tucker, M.: Stranded parasequence and the forced regressive wedge systems tract: deposition during base level fall. Sediment. Geol. 81, 1–9 (1992)

    Article  Google Scholar 

  43. Vail, P.R.; Hardenbol, J.; Todd, R.G.: Jurassic unconformities, chronostratigraphy and sea-level changes from seismic stratigraphy and biostratigraphy. In: Schlee, J.S. (ed.) Interregional unconformities and hydrocarbon exploration, pp. 129–144. AAPG Memoir (1984)

  44. Trichet, J.: Etude de la composition de la fraction organique des oolites. Comparaison avec celle des membranes des bacte’ries et des cyanophyce’es. C.R. Acad. Sci. Paris 267, 1392–1494 (1968)

    Google Scholar 

  45. Margolis, S.; Rex, R.W.: 1971 Endolithic algae and micrite envelope formation in Bahamian oolites as revealed by scanning electron microscopy. Geol. Soc. Am. Bull. 82, 843–852 (1971)

    Article  Google Scholar 

  46. Rankey, E.C.; Riegl, B.; Steffen, K.: Form, function and feedbacks in a tidally dominated ooid shoal. Bahamas. Sedimentology 53(6), 1191–1210 (2006)

    Article  Google Scholar 

  47. Wilkinson, B.H.; Landing, E.: “Eggshell diagenesis” and primary radial fabric in calcite ooids. J. Sediment. Petrol. 48, 1129–1138 (1978)

    Article  Google Scholar 

  48. Tucker, M.E.; Wright, V.P.: Carbonate Sedimentology, p. 482. Blackwell Science, Oxford (1990)

    Book  Google Scholar 

  49. Mei, M.X.: Conceptual change from depositional sequences to eustatic sequences: an important development in sequence stratigraphy. J. Stratigr. 39(1), 58–73 (2015). (in Chinese with English abstract)

    Google Scholar 

  50. Nummedal, D.; Gupta, S.; Plint, A.G.; Cole, R.D.: The falling stage systems tract: definition, character and expression in several examples from the Cretaceous from the U.S. Western Interior. In: Hunt, D., Gawthorpe, R.L., Dogherty, M. (eds.) Sedimentary Responses to Forced Regressions, pp. 45–48. Geol. Soc London (1995)

  51. Kahle, C.F.: Ooids from Great Salt Lake, Utah, as an analogue for the genesis and diagenesis of ooids in marine limestones. J. Sediment. Petrol. 44, 30–39 (1974)

    Google Scholar 

  52. Mei, M.X.: Correlation of sequence boundaries according to discerning between normal and forced regressions: the first advance in sequence stratigraphy. J. Palaeogeogr. 12(5), 549–564 (2010). (in Chinese with English abstract)

    Google Scholar 

  53. Catuneanu, O.; Galloway, W.E.; Kendall, C.G.S.C.; Mail, A.D.; Posamentier, H.W.; Strasser, A.; Tucker, M.E.: Sequence stratigraphy: methodology and nomenclature. Newsl. Stratigr. 44(3), 173–245 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Riaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, M., Xiao, E., Latif, K. et al. Sequence-Stratigraphic Position of Oolitic Bank of Cambrian in North China Platform: Example from the Kelan Section of Shanxi Province. Arab J Sci Eng 44, 391–407 (2019). https://doi.org/10.1007/s13369-018-3403-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3403-z

Keywords

Navigation