Skip to main content
Log in

Fabrication of Zinc Oxide/Polypyrrole Nanocomposites for Brilliant Green Removal from Aqueous Phase

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Zinc oxide/polypyrrole (ZnO/PPy) nanocomposites were fabricated by a in situ polymerization method. The structures of the nanocomposites were analyzed by X-ray diffraction, Fourier transform infrared spectra, thermogravimetric analysis and transmission electron spectroscopy. Then, the capability of ZnO/PPy on the removal of brilliant green from aqueous phase was systematically studied. The ZnO/PPy showed high adsorption capacity toward brilliant green, and a maximum adsorption capacity of 140.8 mg/g at room temperature was achieved. The adsorption kinetics demonstrated a rapid brilliant green uptake by ZnO/PPy, and the experimental data were well fitted to the pseudo-second-order model. The equilibrium data obeyed the Langmuir model. Thermodynamic parameters of \(\Delta {G}^{0}\) and \(\Delta {H}^{0}\) verified the spontaneous and endothermic nature of the brilliant green adsorption onto ZnO/PPy. Furthermore, the regeneration experiments revealed that ZnO/PPy could be reused for at least five times without considerable decrease in their original adsorption capacity, showing potential applications in purification of dyeing effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khandare, R.V.; Govindwar, S.P.: Phytoremediation of textile dyes and effluents: current scenario and future prospects. Biotechnol. Adv. 33, 1697–1714 (2015)

    Article  Google Scholar 

  2. Cooper, P.: Removing colour from dyehouse waste waters—a critical review of technology available. Color. Technol. 109, 97–100 (2010)

    Google Scholar 

  3. Anastopoulos, I.; Kyzas, G.Z.: Agricultural peels for dye adsorption: a review of recent literature. J. Mol. Liq. 200, 381–389 (2014)

    Article  Google Scholar 

  4. Preethi, S.; Sivasamy, A.; Sivanesan, S.; Ramamurthi, V.; Swaminathan, G.: Removal of safranin basic dye from aqueous solutions by adsorption onto corncob activated carbon. Ind. Eng. Chem. Res. 45, 7627–7632 (2016)

    Article  Google Scholar 

  5. Zhu, R.; Chen, Q.; Zhou, Q.; Xi, Y.; Zhu, J.; He, H.: Adsorbents based on montmorillonite for contaminant removal from water: a review. Appl. Clay Sci. 123, 239–258 (2016)

    Article  Google Scholar 

  6. Nassar, M.Y.; Abdallah, S.: Facile controllable hydrothermal route for a porous \(\text{ CoMn }_{2}\text{ O }_{4}\) nanostructure: synthesis, characterization, and textile dye removal from aqueous media. RSC Adv. 6, 84050–84067 (2016)

    Article  Google Scholar 

  7. Fan, L.; Luo, C.; Li, X.; Lu, F.; Qiu, H.; Sun, M.: Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J. Hazard. Mater. s215–216, 272–279 (2012)

    Article  Google Scholar 

  8. Yu, J.X.; Cai, X.L.; Feng, L.Y.; Xiong, W.L.; Zhu, J.; Xu, Y.L.; Zhang, Y.F.; Chi, R.A.: Synergistic and competitive adsorption of cationic and anionic dyes on polymer modified yeast prepared at room temperature. J. Taiwan Inst. Chem. Eng. 57, 98–103 (2015)

    Article  Google Scholar 

  9. Bhattacharyya, K.G.; Gupta, S.S.: Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv. Colloid Interface Sci. 140, 114–131 (2008)

    Article  Google Scholar 

  10. Prola, L.D.; Machado, F.M.; Bergmann, C.P.; de Souza, F.E.; Gally, C.R.; Lima, E.C.; Adebayo, M.A.; Dias, S.L.; Calvete, T.: Adsorption of direct blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon. J. Environ. Manag. 130, 166–175 (2013)

    Article  Google Scholar 

  11. Nguyen-Le, M.T.; Lee, B.K.: High temperature synthesis of interfacial functionalized carboxylate mesoporous \(\text{ TiO }_{2}\) for effective adsorption of cationic dyes. Chem. Eng. J. 281, 20–33 (2015)

    Article  Google Scholar 

  12. Tajizadegan, H.; Torabi, O.; Heidary, A.; Golabgir, M.H.; Jamshidi, A.: Study of methyl orange adsorption properties on ZnO–Al\(_{2}\)O\(_{3}\) nanocomposite adsorbent particles. Desalin. Water Treat. 57, 12324–12334 (2016)

    Article  Google Scholar 

  13. Salem, A.N.M.; Ahmed, M.A.; El-Shahat, M.F.: Selective adsorption of amaranth dye on \(\text{ Fe }_{3}\text{ O }_{4}\)/MgO nanoparticles. J. Mol. Liq. 219, 780–788 (2016)

    Article  Google Scholar 

  14. Nassar, M.Y.; Mohamed, T.Y.; Ahmed, I.S.; Samir, I.: MgO nanostructure via a sol–gel combustion synthesis method using different fuels: an efficient nano-adsorbent for the removal of some anionic textile dyes. J. Mol. Liq. 225, 730–740 (2017)

    Article  Google Scholar 

  15. Nassar, M.Y.; Ali, E.I.; Zakaria, E.S.: Tunable auto-combustion preparation of \(\text{ TiO }_{2}\) nanostructures as efficient adsorbents for the removal of an anionic textile dye. RSC Adv. 7, 8034–8050 (2017)

    Article  Google Scholar 

  16. Oschmann, B.; Tahir, M.N.; Mueller, F.; Bresser, D.; Lieberwirth, I.; Tremel, W.; Passerini, S.; Zentel, R.: Precursor polymers for the carbon coating of Au@ZnO multipods for application as active material in lithium-ion batteries. Macromol. Rapid Commun. 36, 1075–1082 (2015)

    Article  Google Scholar 

  17. Kumar, P.T.; Lakshmanan, V.K.; Anilkumar, T.V.; Ramya, C.; Reshmi, P.; Unnikrishnan, A.G.; Nair, S.V.; Jayakumar, R.: Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS Appl. Mater. Interfaces 4, 2618–2629 (2012)

    Article  Google Scholar 

  18. Shafaamri, A.; Kasi, R.; Balakrishnan, V.; Subramaniam, R.T.; Arof, A.K.: Amelioration of anticorrosion and hydrophobic properties of epoxy/PDMS composite coatings containing nano ZnO particles. Prog. Org. Coat. 92, 54–65 (2016)

    Article  Google Scholar 

  19. Ahmad, M.; Shi, Y.; Nisar, A.; Sun, H.; Shen, W.; Wei, M.; Zhu, J.: Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J. Mater. Chem. 21, 7723–7729 (2011)

    Article  Google Scholar 

  20. Nassar, M.Y.; Ali, A.A.; Amin, A.S.: A facile Pechini sol–el synthesis of \(\text{ TiO }_{2}/\text{ Zn }_{2}\text{ TiO }_{2}\)/ZnO/C nanocomposite: an efficient catalyst for the photocatalytic degradation of orange G textile dye. RSC Adv. 7, 30411–30421 (2017)

    Article  Google Scholar 

  21. Esmaielzadeh, K.A.; Sabri, Y.M.; Mohammadtaheri, M.; Bansal, V.; Bhargava, S.K.: Detect remove and reuse: a new paradigm in sensing and removal of Hg(II) from wastewater via SERS-active ZnO/Ag nanoarrays. Environ. Sci. Technol. 49, 1578–1584 (2015)

    Article  Google Scholar 

  22. Nassar, M.Y.; Moustafa, M.M.; Taha, M.M.: A hydrothermal tuning of the morphology and particle size of hydrozincite nanoparticles using different counter ions to produce nano-sized ZnO as an efficient adsorbent for textile dye removal. RSC Adv. 6, 42180–42195 (2016)

    Article  Google Scholar 

  23. Pei, C.; Han, G.; Zhao, Y.; Zhao, H.; Liu, B.; Cheng, L.; Yang, H.; Liu, S.: Superior adsorption performance for triphenylmethane dyes on 3D architectures assembled by ZnO nanosheets as thin as \(\sim \)1.5nm. J. Hazard. Mater. 318, 732–741 (2016)

    Article  Google Scholar 

  24. Kumar, K.Y.; Muralidhara, H.B.; Nayaka, Y.A.; Balasubramanyam, J.; Hanumanthappa, H.: Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution. Powder Technol. 246, 125–136 (2013)

    Article  Google Scholar 

  25. Feng, J.; Wang, Y.; Zou, L.; Li, B.; He, X.; Ren, Y.; Lv, Y.; Fan, Z.: Synthesis of magnetic \(\text{ ZnO/ZnFe }_{2}\text{ O }_{4}\) by a microwave combustion method, and its high rate of adsorption of methylene blue. J. Colloid Interface Sci. 438, 318–322 (2015)

    Article  Google Scholar 

  26. Farrokhi, M.; Hosseini, S.C.; Yang, J.K.; Shirzad-Siboni, M.: Application of ZnO–Fe\(_{3}\)O\(_{4}\) nanocomposite on the removal of azo dye from aqueous solutions: kinetics and equilibrium studies. Water Air Soil Pollut. 225, 1–12 (2014)

    Article  Google Scholar 

  27. Hallaji, H.; Keshtkar, A.R.; Moosavian, M.A.: A novel electrospun PVA/ZnO nanofiber adsorbent for U(VI), Cu(II) and Ni(II) removal from aqueous solution. J. Taiwan Inst. Chem. Eng. 46, 109–118 (2015)

    Article  Google Scholar 

  28. Chaudhary, S.; Kaur, Y.; Umar, A.; Chaudhary, G.R.: Ionic liquid and surfactant functionalized ZnO nanoadsorbent for recyclable proficient adsorption of toxic dyes from waste water. J. Mol. Liq. 224, 1294–1304 (2016)

    Article  Google Scholar 

  29. Bhattacharya, A.; De, A.: Conducting composites of polypyrrole and polyaniline a review. Prog. Solid State Chem. 24, 141–181 (1996)

    Article  Google Scholar 

  30. Bae, W.J.; And, K.H.K.; Jo, W.H.; Yun, H.P.: A water-soluble and self-doped conducting polypyrrole graft copolymer. Macromolecules 38, 1044–1047 (2015)

    Article  Google Scholar 

  31. Razaq, A.; Mihranyan, A.; Welch, K.; Nyholm, L.; Strømme, M.: Influence of the type of oxidant on anion exchange properties of fibrous cladophora cellulose/polypyrrole composites. J. Phys. Chem. B 113, 426–433 (2009)

    Article  Google Scholar 

  32. Chang, H.H.; Chang, C.K.; Tsai, Y.C.; Liao, C.S.: Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor. Carbon 50, 2331–2336 (2012)

    Article  Google Scholar 

  33. Yavuz, Ö.; Ram, M.K.; Aldissi, M.; Poddar, P.; Srikanth, H.: Polypyrrole composites for shielding applications. Synth. Met. 151, 211–217 (2005)

    Article  Google Scholar 

  34. Huang, Y.H.; Park, K.S.; Goodenough, J.B.: Improving lithium batteries by tethering carbon-coated \(\text{ LiFePO }_{4}\) to polypyrrole. J. Electrochem. Soc. 153, A2282–A2286 (2015)

    Article  Google Scholar 

  35. Zinovyeva, V.A.; Vorotyntsev, M.A.; Bezverkhyy, I.; Chaumont, D.; Hierso, J.C.: Highly dispersed palladium–polypyrrole nanocomposites: in-water synthesis and application for catalytic arylation of heteroaromatics by direct C–H bond activation. Adv. Funct. Mater. 21, 1064–1075 (2011)

    Article  Google Scholar 

  36. Bhaumik, M.; Maity, A.; Srinivasu, V.V.; Onyango, M.S.: Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/\(\text{ Fe }_{3}\text{ O }_{4}\) magnetic nanocomposite. J. Hazard. Mater. 190, 381–390 (2011)

    Article  Google Scholar 

  37. Li, J.; Feng, J.; Yan, W.: Excellent adsorption and desorption characteristics of polypyrrole/\(\text{ TiO }_{2}\) composite for methylene blue. Appl. Surf. Sci. 279, 400–408 (2013)

    Article  Google Scholar 

  38. Li, X.; Lu, H.; Zhang, Y.; He, F.: Efficient removal of organic pollutants from aqueous media using newly synthesized polypyrrole/CNTs–CoFe\(_{2}\)O\(_{4}\) magnetic nanocomposites. Chem. Eng. J. 316, 893–902 (2017)

    Article  Google Scholar 

  39. Bai, L.; Li, Z.; Zhang, Y.; Wang, T.; Lu, R.; Zhou, W.; Gao, H.; Zhang, S.: Synthesis of water-dispersible graphene-modified magnetic polypyrrole nanocomposite and its ability to efficiently adsorb methylene blue from aqueous solution. Chem. Eng. J. 279, 757–766 (2015)

    Article  Google Scholar 

  40. Barkade, S.S.; Pinjari, D.V.; Singh, A.K.; Gogate, P.R.; Naik, J.B.; Sonawane, S.H.; Ashokkumar, M.; Pandit, A.B.: Ultrasound assisted miniemulsion polymerization for preparation of polypyrrole–zinc oxide (PPy/ZnO) functional latex for liquefied petroleum gas sensing. Ind. Eng. Chem. Res. 52, 7704–7712 (2013)

    Article  Google Scholar 

  41. Chen, Y.; Zhao, Z.; Zhang, C.: Structural and electrochemical study of polypyrrole/ZnO nanocomposites coating on nickel sheet synthesized by electrochemical method. Synth. Met. 163, 51–56 (2013)

    Article  Google Scholar 

  42. Nassar, M.Y.; Ahmed, I.S.; Mohamed, T.Y.: A controlled, template-free, and hydrothermal synthesis route to sphere-like \(\alpha \text{-Fe }_{2}\text{ O }_{3}\) nanostructures for textile dye removal. RSC Adv. 6, 20001–20013 (2016)

    Article  Google Scholar 

  43. Nassar, M.Y.; Mai, K.: Cobalt ferrite nanoparticles via a template-free hydrothermal route as an efficient nano-adsorbent for potential textile dye removal. RSC Adv. 6, 79688–79705 (2016)

    Article  Google Scholar 

  44. Nassar, M.Y.; Mohamed, T.Y.; Ahmed, I.S.; Mohamed, N.M.; Khatab, M.: Hydrothermally synthesized Co\(_{3}\text{ O }_{4}\), \(\alpha \text{-Fe }_{2}\text{ O }_{3}\) and \(\text{ CoFe }_{2}\text{ O }_{4}\) nanostructures: efficient nano-adsorbents for the removal of orange G textile dye from aqueous media. J. Inorg. Organomet. Polym. 27, 1526–1537 (2017)

    Article  Google Scholar 

  45. Ghaedi, M.; Hossainian, H.; Montazerozohori, M.; Shokrollahi, A.; Shojaipour, F.; Soylak, M.; Purkait, M.K.: A novel acorn based adsorbent for the removal of brilliant green. Desalination 281, 226–233 (2011)

    Article  Google Scholar 

  46. Vigneshpriya, D.; Krishnaveni, N.; Renganathan, S.: Marine brown macroalga Sargassum wightii as a novel biosorbent for removal of brilliant green dye from aqueous solution: kinetics, equilibrium isotherm modeling and phytotoxicity of treated and untreated dye. Desalin. Water Treat. 78, 300–312 (2017)

    Article  Google Scholar 

  47. Kong, L.; Qiu, F.; Zhao, Z.; Zhang, X.; Zhang, T.; Pan, J.; Yang, D.: Removal of brilliant green from aqueous solutions based on polyurethane foam adsorbent modified with coal. J. Clean. Prod. 137, 51–59 (2016)

    Article  Google Scholar 

  48. Agarwal, S.; Gupta, V.K.; Ghasemi, M.; Azimi-Amin, J.: Peganum harmala-L seeds adsorbent for the rapid removal of noxious brilliant green dyes from aqueous phase. J. Mol. Liq. 231, 296–305 (2017)

    Article  Google Scholar 

  49. Dahri, M.K.; Lim, L.B.; Mei, C.C.: Cempedak durian as a potential biosorbent for the removal of brilliant green dye from aqueous solution: equilibrium, thermodynamics and kinetics studies. Environ. Monit. Assess. 187, 546 (2015)

    Article  Google Scholar 

  50. Tang, J.; Mu, B.; Wang, W.; Zheng, M.; Wang, A.: Fabrication of manganese dioxide/carbon/attapulgite composites derived from spent bleaching earth for adsorption of Pb(II) and brilliant green. RSC Adv. 6, 36534–36543 (2016)

    Article  Google Scholar 

  51. Shah, A.T.; Din, M.I.; Kanwal, F.N.; Mirza, M.L.: Direct synthesis of mesoporous molecular sieves of NI-SBA-16 by internal pH adjustment method and its performance for adsorption of toxic brilliant green dye. Arab. J. Chem. 8, 579–586 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengmeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Chang, L., Zhao, Y. et al. Fabrication of Zinc Oxide/Polypyrrole Nanocomposites for Brilliant Green Removal from Aqueous Phase. Arab J Sci Eng 44, 111–121 (2019). https://doi.org/10.1007/s13369-018-3258-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3258-3

Keywords

Navigation