Skip to main content
Log in

Characterizing the Role of Clay and Silica Nanoparticles in Enhanced Heavy Oil Recovery During Polymer Flooding

  • Research Article - Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Polymer flooding as one of the most effective methods for enhancing oil recovery has a significant effect on tertiary production of reservoirs with poor vertical sweep efficiencies and those which are extremely heterogeneous. Water-soluble polymers are used to both increase the viscosity of water and decrease the mobility ratio of the displaced and displacing fluids. However, due to high amount of polymer adsorption, presence of divalent cations and mechanical degradation, polymer molecules may lose their properties. Hence it is necessary to further improve the displacement effectiveness of polymer flooding. Despite the fact that several ways have been suggested to enhance the performance of polymer flooding, application of nanoparticles in the improvement of rheological properties of the polymer solution used in enhanced oil recovery has not been reported previously and is still an ongoing subject. This paper investigates the effects of nanoparticles on flow behavior of polymer solution in porous media by employing both experimental studies and numerical simulations. The simulation model first is validated against well-controlled laboratory experiment to have reliable predictions of the full-field implementations. The results show that the amount of polymer adsorption and viscosity of polymer solution will improve when the clay or silica nanoparticles is present in the injectant, and accordingly, the cumulative oil recovery and breakthrough time will be bettered. The result of sensitivity analysis demonstrates that polymer molecules are more degradable during polymer flooding compared to nanoparticles-assisted polymer flooding. Based on the validated model, 3D simulations of nanoparticles-assisted polymer field pilot were performed and the results revealed that the cumulative oil recovery, water cut and breakthrough time will improve when the injectant has some dispersed nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SEM:

Scanning electron microscopy

PV:

Pore volume

TDS:

Total dissolved solids

UTCHEM:

The University of Texas Chemical Compositional simulator

3D:

Three-dimensional

AP1 :

Matching parameter for UTCHEM polymer viscosity model

AP2 :

Matching parameter for UTCHEM polymer viscosity model

AP3 :

Matching parameter for UTCHEM polymer viscosity model

AD41:

Polymer adsorption parameter in UTCHEM

AD42:

Polymer adsorption parameter in UTCHEM

B4D:

Polymer adsorption parameter in UTCHEM

GAMMAC:

UTCHEM parameter in shear rate dependence of polymer viscosity model

POWN:

Parameter for shear rate dependence of polymer viscosity in UTCHEM

SSLOPE:

Parameter for salinity dependence of polymer viscosity in UTCHEM

References

  1. Mai A., Bryan J., Goodarzi N., Kantzas A.: Insight into non-thermal recovery of heavy oil. J. Can. Pet. Technol. 48, 27–35 (2009) doi:10.2118/09-03-27

    Article  Google Scholar 

  2. Farouq A.: Prospects of EOR techniques in Saskatchewan oil reservoirs. J. Can. Pet. Technol. 25, 64–68 (1986) doi:10.2118/86-02-04

    Google Scholar 

  3. Foo, Y.Y.; Chee, S.C.; Md. Zain, Z.; Mamora, D.D.: Recovery processes of extra heavy oil-mechanistic modeling and simulation approach. In: Paper SPE 143390 (2011). doi:10.2118/143390-MS

  4. Bondino, I.; Santanach-Carreras, E.; Levitt, D.; Jouenne, S.; Bourrel, M.: Polymer flooding of heavy oil under adverse mobility conditions. In: Paper SPE 165267 (2013). doi:10.2118/165267-MS

  5. Shamekhi, H.; Kantzas, A.; Bryan, J.; Su, S.: Insights into heavy oil recovery by surfactant, polymer and ASP flooding. In: Paper SPE 165440 (2013). doi:10.2118/165440-MS

  6. Van Heel, A.; Van Drop, J.; Boerrigter, P.M.: Heavy oil recovery by steam injection in fractured reservoirs. In: Paper SPE 113461 (2008). doi:10.2118/113461-MS

  7. Buckles, R.S.: Steam stimulation heavy oil recovery at Cold Lake, Alberta. In: Paper SPE 7994 (1979). doi:10.2118/7994-MS

  8. Farouq Ali, S.M.: Heavy oil recovery-principles, practicality, potential, and problems. In: Paper SPE 4935 (1974). doi:10.2118/4935-MS

  9. Butler, R.M.; Mokrys, I.J.: A new process (VAPEX) for recovering heavy oil using hot water and hydrocarbon vapor. J. Can. Pet. Technol. 30 (1991). doi:10.2118/91-01-09

  10. Shen, C.: Limitations and potentials of in-situ combustion processes for heavy oil reservoirs. In: Paper PETSOC-2002-217 (2002). doi:10.2118/2002-217

  11. Center for Petroleum and Geosystems Engineering, The University of Texas at Austin (Producer), Chemical EOR-what’s new, whats works, where to use it (2015). http://www.cpge.utexas.edu/?q=111115_eor

  12. Kumar, R.; Mohanty, K.: Sweep efficiency of heavy oil recovery by chemical floods. In: Paper SPE 146839 (2011). doi:10.2118/146839-MS

  13. Panthi K., Sharma H., Mohanty K.K.: ASP flood of a viscous oil in a carbonate rock. Fuel 164, 18–27 (2015) doi:10.1016/j.fuel.2015.09.072

    Article  Google Scholar 

  14. Seright R.S.: Potential of polymer flooding reservoirs with viscous oils. SPE Reserv. Eval. Eng. 13, 730–740 (2010) doi:10.2118/129899-PA

    Article  Google Scholar 

  15. Aitkulov, A.: Two-dimensional ASP flood of viscous oil (MS Thesis), The University of Texas at Austin, Austin, Texas (2014)

  16. Fortenberry, R.: Experimental demonstration and improvement of chemical EOR techniques in heavy oils (MS Thesis), The University of Texas at Austin, Austin, Texas (2013)

  17. Fortenberry, R.; Suniga, P.; Mothersele, S.; Delshad, M.; Lashgari, H.; Pope, G.A.: Selection of chemical EOR strategy in a heavy oil reservoir using laboratory data and reservoir simulation. In: Paper SPE 174520 (2015). doi:10.2118/174520-MS

  18. Needham R., Doe P.: Polymer flooding review. J. Pet. Technol. 39, 1503–1507 (1987) doi:10.2118/17140-PA

    Article  Google Scholar 

  19. Sheng J., Leonhardt B., Azri N.: Status of polymer-flooding technology. J. Can. Pet. Technol. 54, 116–126 (2015) doi:10.2118/174541-PA

    Article  Google Scholar 

  20. Gogarty W.B.: Mobility control with polymer solutions. SPE J. 7, 161–173 (1967) doi:10.2118/1566-B

    Article  Google Scholar 

  21. Pu, H.; Yin, D.: Study of polymer flooding in class III reservoir and pilot test. In: Paper SPE 109546 (2008). doi:10.2118/109546-MS

  22. Littman, W.: Polymer Flooding, No. 24. Developments in Petroleum Science, Elsevier Science Publishers B.V., Amsterdam (1988)

  23. Kurenkov V.F., Harten H.G., Lobanov F.I.: Degradation of polyacrylamide and its derivatives in aqueous solutions. Russ J Appl Chem 75, 1039–1050 (2002) doi:10.1023/A:1020747523268

    Article  Google Scholar 

  24. Caufield M.J., Hao X., Qiau G.G., Solomon D.H.: Degradation on polyacrylamides: part II, polyacrylamide gels. J Polym 44, 3817–3826 (2003) doi:10.1016/S0032-3861(03)00330-6

    Article  Google Scholar 

  25. Aminnaji M., Fazeli H., Bahramian A., Gerami S., Ghojavand H.: Wettability alteration of reservoir rocks from liquid wetting to gas wetting using nanofluid. Transp. Porous Media 109, 201–216 (2015) doi:10.1007/s11242-015-0509-6

    Article  Google Scholar 

  26. Zargartalebi M., Kharrat R., Barati N.: Enhancement of surfactant flooding performance by the use of silica nanoparticles. Fuel 143, 21–27 (2015) doi:10.1016/j.fuel.2014.11.040

    Article  Google Scholar 

  27. Khalilinezhad, S.S.; Cheraghian, G.: Mechanisms behind injecting the combination of nano-clay particles and polymer solution for enhanced oil recovery. Appl. Nanosci. (2015). doi:10.1007/s13204-015-0500-0

  28. Zargartalebi M., Barati N., Kharrat R.: Influences of hydrophilic silica nanoparticles on anionic surfactant properties: interfacial and adsorption behaviors. J. Pet. Sci. Eng. 119, 36–43 (2014) doi:10.1016/j.petrol.2014.04.010

    Article  Google Scholar 

  29. Alghamdi, A.A.L.: Experimental evaluation of nanoparticles impact on displacement dynamics for water-wet and oil-wet porous media. (MS Thesis), The University of Texas at Austin, Austin, Texas (2015)

  30. Cheraghian G., Khalilinezhad, S.S.: Effect of nano clay on heavy oil recovery during polymer flooding. J. Pet. Sci. Technol. 33, 999–1007 (2015) doi:10.1080/10916466.2015.1014962

    Article  Google Scholar 

  31. Ahmad, Y.K.: Nano-particles-stabilized oil-in-water emulsions for residual oil recovery (MS Thesis), The University of Texas at Austin, Austin, Texas (2015)

  32. Hendraningrat L., Li S., Torsaeter O.: A core flood investigation of nanofluid enhanced oil recovery. J. Pet. Sci. Eng. 111, 128–138 (2013) doi:10.1016/j.petrol.2013.07.003

    Article  Google Scholar 

  33. Mohajeri M., Hemmati M., Shekarabi A.Z.: An experimental study on using a nanosurfactant in an EOR process of heavy oil in a fractured micromodel. J. Pet. Sci. Eng. 126, 162–173 (2015) doi:10.1016/j.petrol.2014.11.012

    Article  Google Scholar 

  34. Maghzi A., Kharrat R., Mohebbi A., Ghazanfari M.H.: The impact of silica nanoparticles on the performance of polymer solution in presence of salt in polymer flooding for heavy oil recovery. Fuel 123, 123–132 (2014) doi:10.1016/j.fuel.2014.01.017

    Article  Google Scholar 

  35. Maghzi A., Mohebbi A., Kharrat R., Ghazanfari M.H.: Pore scale monitoring wettability alteration by silica nanoparticles during polymer flooding to heavy oil in a five-spot glass micromodels. Transp. Porous Media 87, 653–664 (2010) doi:10.1007/s11242-010-9696-3

    Article  Google Scholar 

  36. Maghzi A., Mohammadi S., Ghazanfari M.H., Kharrat R., Masihi M.: Monitoring wettability alteration by silica nanoparticles during water flooding to heavy oils in a five-spot systems: a pore level investigation. Exp. Therm. Fluid Sci. 40, 168–176 (2012) doi:10.1016/j.expthermflusci.2012.03.004

    Article  Google Scholar 

  37. Saad, N.: Field scale simulation of chemical flooding, (Ph.D. Dissertation), The University of Texas at Austin, Austin, Texas (1989)

  38. Bhuyan, D.: Development of an alkaline/surfactant/polymer compositional reservoir simulator, (Ph.D. Dissertation), The University of Texas at Austin, Austin, Texas (1989)

  39. Delshad M., Pope G.A., Sepehrnoori K.: A compositional simulator for modeling surfactant enhanced aquifer remediation, 1 formulation. J. Contam. Hydrol. 23, 303–327 (1996) doi:10.1016/0169-7722(95)00106-9

    Article  Google Scholar 

  40. UTCHEM-9.0, A three-dimensional chemical flood simulator, Volumes 1 and 2, Reservoir Engineering Research Program, Center for Petroleum and Geosystems Engineering, The University of Texas at Austin (2000)

  41. Saad N., Pope G.A., Sepehrnoori K.: Simulation of big muddy surfactant pilot. SPE Reserv. Eng. 4, 24–34 (1989) doi:10.2118/17549-PA

    Article  Google Scholar 

  42. Takagi, S.: Field-scale simulation of chateaurenard polymer pilot (MS Thesis), The University of Texas at Austin, Austin, Texas (1992)

  43. Goudarzi, A.: Modeling conformance control and chemical EOR processes using different reservoir simulators (Ph.D. Dissertation), The University of Texas at Austin, Austin, Texas (2015)

  44. Korrani A.K.N., Sepehrnoori K., Delshad M.: A mechanistic integrated geochemical and chemical-flooding tool for alkaline-surfactant-polymer floods. SPE J. 21, 32–54 (2016) doi:10.2118/169094-PA

    Article  Google Scholar 

  45. Donaldson E.C., Chilingarian G.V., Yen T.F.: Enhanced oil recovery. II processes and operations. Elsevier Science Publishers B.V, Amsterdam (1989)

    Google Scholar 

  46. Brookfield DV-III Ultra, A Programmable Rheometer, Manual Number: M/98-211-E0912, Brookfield Engineering Laboratories Inc. USA. http://www.brookfieldengineering.com/download/files/DVIIIUltraC.pdf

  47. Cheraghian G., Khalilinezhad S.S., Kamari M., Hemmati M., Masihi M., Bazgir S.: Adsorption polymer on reservoir rocks and role of the nano-particles, clay and silica. J. Int. Nano Lett. 4, 114–121 (2014) doi:10.1007/s40089-014-0114-7

    Article  Google Scholar 

  48. Ehrenfried, D.H.: Impact of viscoelastic polymer flooding on residual oil saturation in sandstones (MS Thesis), The University of Texas at Austin, Austin, Texas (2013)

  49. Mohammadi, H.: Mechanistic modeling, design, and optimization of alkaline/surfactant/polymer flooding (Ph.D. Dissertation), The University of Texas at Austin, Austin, Texas (2008)

  50. Zhao F.-L.: Chemistry in Oil Production. University of Petroleum, China (1991)

    Google Scholar 

  51. Sheng J.J.: Modern chemical enhanced oil recovery: theory and practice. Elsevier, Amsterdam (2011) doi:10.1016/B978-1-85617-745-0.00005-X

    Google Scholar 

  52. Chiappa L., Mennella A., Lockart T.P., Burrafato G.: Polymer adsorption at the brine/rock interface: the role of electrostatic and wettability. J. Pet. Sci. Eng. 24, 113–122 (1999) doi:10.1016/S0920-4105(99)00035-2

    Article  Google Scholar 

  53. Skauge, T.; Spildo, K.; Skauge, A.: Nano-sized particles for EOR. In: Paper SPE 129933 (2008). doi:10.2118/129933-MS

  54. Kazempour M., Sundstrom E.A., Alvarado V.: Effect of alkalinity on oil recovery during polymer floods in sandstones. SPE J. 15, 195–209 (2012) doi:10.2118/141331-PA

    Google Scholar 

  55. Cheraghian G., Nezhad S.S.K., Bazgir S.: Improvement of thermal stability of polyacrylamide solution used as a nano-fluid in enhanced oil recovery process by nano clay. Int. J. Nanosci. Nanotechnol. 11, 201–208 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Shahram Khalilinezhad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalilinezhad, S.S., Cheraghian, G., Karambeigi, M.S. et al. Characterizing the Role of Clay and Silica Nanoparticles in Enhanced Heavy Oil Recovery During Polymer Flooding. Arab J Sci Eng 41, 2731–2750 (2016). https://doi.org/10.1007/s13369-016-2183-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2183-6

Keywords

Navigation