Skip to main content
Log in

Artificial Neural Network Approach for Predicting the Water Turbidity Level Using Optical Tomography

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Water pollution can occur with a variety of reasons such as the change in water colour, the presence of harmful bacteria and toxic waste spills. This paper presents an application of an optical tomography system based on artificial neural network (ANN) to predict the turbidity level of water sample. The system made use of the independent component analysis algorithm to calculate the K value, which indicates the attenuation value of the water turbidity level. The K value then is utilized by ANN to estimate the turbidity level. The optical tomography system can be used to evaluate the water turbidity level in the pipeline without disturbing the flow process. Evaluation of the mean square error (MSE), sum square error (SSE) and regression analysis (R) also enabled us to determine the network performance which demonstrated that the neural network is effective in inspecting the water turbidity level. The best neurone structure is revealed when two hidden layers with 20 and 10 neurones in the first and the second layer, respectively, are used. The training result shows \({9.7147 \times 10^{-7}}\) for MSE, 0.1432 for SSE and 0.99911 for regression. For the testing part, the result for the neurone structure is \({8.1473 \times 10^{-5}}\) for MSE, 0.7509 for SSE and 0.98525 for regression. The results revealed that the performance of ANN demonstrated a good prediction capability when the turbidity level changed. Thus, an optical tomography system with ANN proved to be an efficient tool to classify the water quality level and is beneficial to the water industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Darral N.M.: The effect of air pollutants on physiological processes in plants. Plant Cell Environ. 12, 1–30 (1989)

    Article  Google Scholar 

  2. Krantz-Rülcker C., Stenberg M., Winquist F., Lundström I.: Electronic tongues for environmental monitoring based on sensor arrays and pattern recognition: a review. Anal. Chim. Acta. 426, 217–226 (2001)

    Article  Google Scholar 

  3. Kuklina I., Kouba A., Kozák P.: Real-time monitoring of water quality using fish and crayfish as bio-indicators: a review. Environ. Monit. Assess. 185(6), 5043–5053 (2013)

    Article  Google Scholar 

  4. Steig T.W., Johnston S.V.: Monitoring fish movement patterns in a reservoir using horizontally scanning split-beam techniques. ICES J. Mar. Sci. 53, 435–441 (1996)

    Article  Google Scholar 

  5. Serra-Toro, C.; Montoliu, R.; Traver, V. J.; Hurtado-Melgar, I. M.; Nunez-Redo, M.; Cascales, P.: Assessing water quality by video monitoring fish swimming behavior. In: 2010 20th International Conference on Pattern Recognition. Istanbul, Turkey, pp. 428–431 (2010)

  6. Ma H., Tsai T.-F., Liu C.-C.: Real-time monitoring of water quality using temporal trajectory of live fish. Expert Syst. Appl. 37(7), 5158–5171 (2010)

    Article  Google Scholar 

  7. Yang, G.-H.; Ryuh, Y.: Design of high speed fish-like robot “Ichthus V5.7.” In: 2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). Jeju, South Korea, pp. 451–453 (2013)

  8. Liu Y., Chen W., Liu J.: Research on the swing of the body of two-joint robot fish. J. Bionic Eng. 5, 159–165 (2008)

    Article  Google Scholar 

  9. Omar A.F.B., Matjafri M.Z.B.: Turbidimeter design and analysis: a review on optical fiber sensors for the measurement of water turbidity. Sensors 9(10), 8311–8335 (2009)

    Article  Google Scholar 

  10. Garcia A., Perez M.A., Ortega G.J.G.O., Dizy J.T.: A new design of low-cost four-beam turbidimeter by using optical fibers. IEEE Trans. Instrum. Meas. 56(3), 907–912 (2007)

    Article  Google Scholar 

  11. Bilro L., Prats S.A., Pinto J.L., Keizer J.J., Nogueira R.N.: Design and performance assessment of a plastic optical fibre-based sensor for measuring water turbidity. Meas. Sci. Technol. 21(10), 1–4 (2010)

    Article  Google Scholar 

  12. Prerana, Shenoy M.R., Pal B.P., Gupta B.D.: Design, analysis, and realization of a turbidity sensor based on collection of scattered light by a fiber-optic probe. IEEE Sens. J. 12(1), 44–50 (2012)

    Article  Google Scholar 

  13. Aiestaran P., Arrue J., Zubia J.: Design of a sensor based on plastic optical fibre (POF) to measure fluid flow and turbidity. Sensors 9, 3790–3800 (2009)

    Article  Google Scholar 

  14. Niskanen I., Räty J., Peiponen K.-E.: A multifunction spectrophotometer for measurement of optical properties of transparent and turbid liquids. Meas. Sci. Technol. 17(12), 87–91 (2006)

    Article  Google Scholar 

  15. Lambrou, T.P.; Anastasiou, C.C.; Panayiotou, C.G.: A nephelometric turbidity system for monitoring residential drinking water quality. In: Komninos, N. Sensor Applications, Experimentation, and Logistics, pp. 43–55. Springer, Heidelberg (2010)

  16. Tai H., Li D., Wang C., Ding Q., Wang C., Liu S.: Design and characterization of a smart turbidity transducer for distributed measurement system. Sens. Actuators A Phys. 175, 1–8 (2012)

    Article  Google Scholar 

  17. Ranasinghe, D.M.A.; Ariyaratne, T.R.: Design and construction of cost effective turbidimeter to be used in water purification plants in Sri Lanka. In: Proceedings of the Technical Sessions, Kelaniya, Sri Lanka. pp. 65–70 (2012)

  18. Orwin J.F., Smart C.C.: An inexpensive turbidimeter for monitoring suspended sediment. Geomorphology 68, 3–15 (2005)

    Article  Google Scholar 

  19. Chang, C.C.; Wu, C.T.; Lin, Y.B.; Gu, M.H.: Water velocimeter and turbidity-meter using visible light communication modules. In: 2013 IEEE Sensors, pp. 1–4, Baltimore, MD, USA (2013)

  20. Ismail I., Gamio J.C., Bukhari S.F.A., Yang W.Q.: Tomography for multi-phase flow measurement in the oil industry. Flow Meas. Instrum. 16, 145–155 (2005)

    Article  Google Scholar 

  21. Ibrahim S., Yunus M.A.M., Green R.G., Dutton K.: Concentration measurements of bubbles in a water column using an optical tomography system. ISA Trans. 51(6), 821–826 (2012)

    Article  Google Scholar 

  22. Zheng Y., Liu Q.: Review of techniques for the mass flow rate measurement of pneumatically conveyed solids. Measurement 44(4), 589–604 (2011)

    Article  Google Scholar 

  23. Liu S., Chen Q., Wang H., Jiang F., Ismail I., Yang W.: Electrical capacitance tomography for gas–solids flow measurement for circulating fluidized beds. Flow Meas. Instrum. 16, 135–144 (2005)

    Article  Google Scholar 

  24. Khairi M.T.M., Ibrahim S., Yunus M.A.M., Faramarzi M.: A review on the design and development of turbidimeter. Sens. Rev. 35(1), 98–105 (2015)

    Article  Google Scholar 

  25. Daniels, A.R.: Dual modality tomography for the monitoring of constituent volumes in multi-component flows. Ph.D. Thesis (1996)

  26. Chen J., Wang X.Z.: A New Approach to near-infrared spectral data analysis using independent component analysis. J. Chem. Inf. Comput. Sci. 41, 992–1001 (2001)

    Article  Google Scholar 

  27. James C.J., Hesse C.W.: Independent component analysis for biomedical signals (Topical Review). Pysiol. Meas. 26(1), R15–R39 (2005)

    Article  Google Scholar 

  28. Wang G., Ding Q., Hou Z.: Independent component analysis and its applications in signal processing for analytical chemistry. Trends Anal. Chem. 27(4), 368–376 (2008)

    Article  Google Scholar 

  29. Yunus M.A.M., Mukhopadhyay S.C., Ibrahim S.: Planar electromagnetic sensor based estimation of nitrate contamination in water sources using independent component analysis. IEEE Sens. J. 12(6), 2024–2034 (2012)

    Article  Google Scholar 

  30. Khairi, M.T.M.; Ibrahim, S.; Yunus, M,A,M.; Sulaiman, M.N.M.: An application of independent component analysis method for estimating the quality level of water using optical tomography. In: 2013 IEEE 4th Control and System Graduate Research Colloquium. Shah Alam, Malaysia (2013)

  31. Naik G.R., Kumar D.K.: An overview of independent component analysis and its applications. Informatica 35, 63–81 (2011)

    MATH  Google Scholar 

  32. Hyvärinen A., Oja E.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks. 10(3), 626–634 (1999)

    Article  Google Scholar 

  33. Gaya M.S., Abdul Wahab N., Sam Y.M., Samsudin S.I., Jamaludin I.W.: Comparison of NARX neural network and classical modelling approaches. Appl. Mech. Mater. 554, 360–365 (2014)

    Article  Google Scholar 

  34. Iglesias C., Martínez Torres J., García Nieto P.J., Alonso Fernández J.R., Díaz Muñiz C., Piñeiro J.I., Taboada J.: Turbidity prediction in a River Basin by using artificial neural networks: A case study in Northern Spain. Water Resour. Manag. 28, 319–331 (2014)

    Article  Google Scholar 

  35. Khalil B.M., Awadallah A.G., Karaman H., El-Sayed A.: Application of artificial neural networks for the prediction of water quality variables in the Nile Delta. J. Water Resour. Prot. 4, 388–394 (2012)

    Article  Google Scholar 

  36. Bayram A., Kankal M., Onsoy H.: Estimation of suspended sediment concentration from turbidity measurements using artificial neural networks. Environ. Monit. Assess. 184, 4355–4365 (2012)

    Article  Google Scholar 

  37. Gazzaz N.M., Yusoff M.K., Aris A.Z., Juahir H., Ramli M.F.: Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors. Mar. Pollut. Bull. 64(11), 2409–2420 (2012)

    Article  Google Scholar 

  38. Chu H.B., Lu W.X., Zhang L.: Application of artificial neural network in environmental water quality assessment. J. Agric. Sci. Tech. 15, 343–356 (2013)

    Google Scholar 

  39. Rak A.: Water turbidity modelling during water treatment processes using artificial neural networks. Int. J. Water Sci. 2(3), 1–10 (2013)

    Article  Google Scholar 

  40. Kabsch-Korbutowicz M., Kutylowska M.: Use of artificial intelligence in predicting the turbidity retention coefficient during ultrafiltration of water. Environ. Prot. Eng. 37(2), 75–84 (2011)

    Google Scholar 

  41. Gaya M.S., Abdul Wahab N., Samsudin S.I.: ANFIS modelling of carbon and nitrogen removal in domestic wastewater treatment plant. J. Teknol. 67(5), 29–34 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sallehuddin Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khairi, M.T.M., Ibrahim, S., Yunus, M.A.M. et al. Artificial Neural Network Approach for Predicting the Water Turbidity Level Using Optical Tomography. Arab J Sci Eng 41, 3369–3379 (2016). https://doi.org/10.1007/s13369-015-1904-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1904-6

Keywords

Navigation