Skip to main content
Log in

Markov degree of the three-state toric homogeneous Markov chain model

  • Original Paper
  • Published:
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry Aims and scope Submit manuscript

Abstract

We consider the three-state toric homogeneous Markov chain model (THMC) without loops and initial parameters. At time \(T\), the size of the design matrix is \(6 \times 3\cdot 2^{T-1}\) and the convex hull of its columns is the model polytope. We study the behavior of this polytope for \(T\ge 3\) and we show that it is defined by \(24\) facets for all \(T\ge 5\). Moreover, we give a complete description of these facets. From this, we deduce that the toric ideal associated with the design matrix is generated by binomials of degree at most \(6\). Our proof is based on a result due to Sturmfels, who gave a bound on the degree of the generators of a toric ideal, provided the normality of the corresponding toric variety. In our setting, we established the normality of the toric variety associated to the THMC model by studying the geometric properties of the model polytope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Bruns, W., Ichim, B., Söger, C.: Normaliz, a tool for computations in affine monoids, vector configurations, lattice polytopes, and rational cones (2011)

  • Diaconis, P., Sturmfels, B.: Algebraic algorithms for sampling from conditional distributions. Ann. Stat. 26(1), 363–397 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Gawrilow, E., Joswig, M.: polymake: a framework for analyzing convex polytopes. In: Kalai, G., Ziegler, G.M. (eds.) Polytopes—Combinatorics and Computation, pp. 43–74. Birkhäuser, Basel (2000)

    Google Scholar 

  • Hara, H., Takemura, A.: A markov basis for two-state toric homogeneous markov chain model without initial paramaters. J. Jpn. Stat. Soc. 41, 33–49 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Haws, D., Martin del Campo, A., Yoshida, R.: Degree bounds for a minimal markov basis for the three-state toric homogeneous markov chain model. In: Proceedings of the Second CREST-SBM International Conference, “Harmony of Grobner Bases and the Modern Industrial Society”, pp. 99–116 (2012)

  • Miller, E., Sturmfels, B.: Combinatorial commutative algebra. In: Graduate texts in mathematics. Springer, Berlin (2005) http://books.google.com/books?id=CqEHpxbKgv8C

  • Pachter, L., Sturmfels, B.: Algebraic Statistics for Computational Biology. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  • Pardoux, E.: Markov Processes and Applications: Algorithms, Networks, Genome and Finance. In: Wiley Series in Probability and Statistics Series. Wiley, Incorporated (2009)

  • Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)

    MATH  Google Scholar 

  • Sturmfels, B.: Gröbner Bases and Convex Polytopes. In: University Lecture Series, vol. 8. American Mathematical Society, Providence (1996)

  • Takemura, A., Hara, H.: Markov chain monte carlo test of toric homogeneous markov chains. Stat. Methodol. 9, 392–406 (2012). doi:10.1016/j.stamet.2011.10.004

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruriko Yoshida.

Additional information

Research of Martín del Campo supported in part by NSF Grant DMS-915211.

Appendix

Appendix

The six cones used in defining \(Q^r\) for \(r=0,\ldots ,5\):

$$\begin{aligned} C^r&:= {{\mathrm{cone}}}\left( \, [1,0,1,0,0,0], [1,0,0,1,1,0], [0,1,1,0,0,1],\right. \\&\quad \left. [0,1,0,0,1,0], [0,0,0,1,0,1] \,\right) \end{aligned}$$

for \(r=0,\ldots ,5\).

The six polytopes used in defining \(Q^r\) for \(r=0,\ldots ,5\) are given below, where the vertices are modulo the permutations of \(S = \{1,2,3\}\). That is, the indexing below is \(x_{12}, x_{21}, x_{13}, x_{31}, x_{23}\), and \(x_{32}\). To get the full list of vertices one should use all six permutations of \(\{1,2,3\}\) and permute the indices of each vertex below accordingly.

\(\mathrm{{vert}}( Q^0) := [\) [0, 1, 1, 0, 0, 1], [0, 1, 2, 1/2, 1, 3/2], [0, 1, 3/2, 1, 1/2, 2], [0, 2, 2, 0, 1, 2], [0, 2, 2, 0, 2, 5], [0, 2, 2, 2/3, 0, 7/3], [0, 2, 3, 0, 2, 4], [0, 2, 4, 2, 0, 3], [0, 2, 3/2, 0, 0, 3/2], [0, 2, 7/3, 0, 2/3, 2], [0, 3, 4, 0, 0, 4], [0, 6/5, 8/5, 4/5, 2/5, 11/5], [0, 6/5, 11/5, 2/5, 4/5, 8/5], [2/3, 4/3, 4/3, 2/3, 2/3, 7/3]\( ]\).

\({{\mathrm{vert}}}( Q^1) := [\) [0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 3, 2], [0, 0, 1, 0, 2, 3], [0, 1, 1, 0, 1, 3], [0, 1, 1, 0, 2, 2], [0, 1, 2, 0, 1, 2], [0, 1, 2, 1, 0, 2], [0, 1, 1/2, 1/2, 1/2, 1/2], [0, 1/2, 0, 1/2, 1, 1], [0, 1/2, 1, 1, 1/2, 0], [0, 1/2, 1/2, 1, 1/2, 1/2], [0, 1/2, 1/2, 1/2, 1, 1/2] \(]\).

\({{\mathrm{vert}}}( Q^2) := [\) [0, 1, 1, 0, 1, 2], [0, 1, 2, 1/2, 2, 5/2], [0, 1, 3, 3/2, 1, 3/2], [0, 1, 3/2, 1, 3/2, 3], [0, 1, 5/2, 2, 1/2, 2], [0, 2, 2, 0, 2, 5], [0, 2, 2, 0, 3, 4], [0, 2, 2, 1, 2, 4], [0, 2, 3, 0, 2, 4], [0, 2, 4, 2, 0, 3], [0, 2, 4, 2, 1, 2], [0, 3, 4, 0, 3, 7], [0, 3, 7, 3, 0, 4], [1/3, 2/3, 2/3, 1/3, 1/3, 2/3], [1/3, 2/3, 5/3, 5/6, 4/3, 7/6], [1/3, 2/3, 7/6, 4/3, 5/6, 5/3], [2/3, 4/3, 4/3, 2/3, 2/3, 7/3], [2/3, 4/3, 4/3, 2/3, 5/3, 4/3] \(]\).

\({{\mathrm{vert}}}( Q^3) := [\) [0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 0], [0, 1, 1, 0, 2, 4], [0, 1, 2, 0, 2, 3], [0, 1, 3, 2, 0, 2] \(]\).

\({{\mathrm{vert}}}( Q^4) := [\) [0, 1, 1, 0, 0, 1], [0, 1, 2, 1/2, 1, 3/2], [0, 1, 3/2, 1, 1/2, 2], [0, 2, 2, 0, 1, 4], [0, 2, 2, 0, 2, 3], [0, 2, 2, 1, 1, 3], [0, 2, 3, 0, 1, 3], [0, 2, 3, 1, 0, 3], [0, 2, 3, 1, 1, 2], [0, 3, 4, 0, 2, 6], [0, 3, 6, 2, 0, 4], [1/3, 5/3, 5/3, 1/3, 1/3, 8/3], [1/3, 5/3, 5/3, 1/3, 4/3, 5/3] \(]\).

\({{\mathrm{vert}}}( Q^5) := [\) [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 4, 3], [0, 0, 1, 0, 3, 4], [0, 1, 1, 0, 2, 4], [0, 1, 1, 0, 3, 3], [0, 1, 2, 0, 2, 3], [0, 1, 3, 2, 0, 2], [0, 1, 1/2, 1/2, 3/2, 3/2], [0, 1, 3/2, 3/2, 1/2, 1/2], [0, 1/2, 0, 1/2, 2, 2], [0, 1/2, 2, 2, 1/2, 0], [0, 1/2, 1/2, 1/2, 2, 3/2], [0, 1/2, 3/2, 2, 1/2, 1/2], [1, 2, 1/2, 1/2, 1/2, 1/2] \(]\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haws, D., Martín del Campo, A., Takemura, A. et al. Markov degree of the three-state toric homogeneous Markov chain model. Beitr Algebra Geom 55, 161–188 (2014). https://doi.org/10.1007/s13366-013-0178-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13366-013-0178-y

Keywords

Mathematics Subject Classification

Navigation