Skip to main content

Advertisement

Log in

The anterior commissure is a pathway for contralateral spread of herpes simplex virus type 1 after olfactory tract infection

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Herpes simplex encephalitis (HSE), targeting the limbic system, is the most common cause of viral encephalitis in the Western world. Two pathways for viral entry to the central nervous system (CNS) in HSE have been suggested: either via the trigeminal nerve or via the olfactory tract. This question remains unsettled, and studies of viral spread between the two brain hemispheres are scarce. Here, we investigated the olfactory infection as a model of infection and tropism of herpes simplex virus 1 (HSV-1), the causative agent of HSE, in the CNS of rats. Rats were instilled with HSV-1 in the right nostril and sacrificed 1–6 days post-infection, and tissues were analysed for viral spread using immunohistochemistry and quantitative PCR (qPCR). After nasal instillation, HSV-1 infected mitral cells of the olfactory bulb (OB) on the right side only, followed by limbic encephalitis. As a novel finding, the anterior commissure (AC) conveyed a rapid transmission of virus between the right and the left OB, acting as a shortcut also between the olfactory cortices. The neuronal cell population that conveyed the viral infection via the AC was positive for the water channel protein aquaporin 9 (AQP9) by immunohistochemistry. Quantification of AQP9 in cerebrospinal fluid samples of HSE patients showed increment as compared to controls. We conclude that the olfactory route and the AC are important for the spread of HSV-1 within the olfactory/limbic system of rats and furthermore, we suggest that AQP9 is involved in viral tropism and pathogenesis of HSE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aravalli RN, Hu S, Rowen TN, Gekker G, Lokensgard JR (2006) Differential apoptotic signaling in primary glial cells infected with herpes simplex virus 1. J Neurovirol 12:501–510

    Article  CAS  PubMed  Google Scholar 

  • Armien AG, Hu S, Little MR, Robinson N, Lokensgard JR, Low WC, Cheeran MC (2010) Chronic cortical and subcortical pathology with associated neurological deficits ensuing experimental herpes encephalitis. Brain Pathol 20:738–750

    Article  PubMed Central  PubMed  Google Scholar 

  • Ashwell KW, Marotte LR, Li L, Waite PM (1996) Anterior commissure of the wallaby (Macropus eugenii): adult morphology and development. J Comp Neurol 366:478–494

    Article  CAS  PubMed  Google Scholar 

  • Badaut J (2010) Aquaglyceroporin 9 in brain pathologies. Neuroscience 168:1047–1057

    Article  CAS  PubMed  Google Scholar 

  • Badaut J, Regli L (2004) Distribution and possible roles of aquaporin 9 in the brain. Neuroscience 129:971–981

    Article  CAS  PubMed  Google Scholar 

  • Badaut J, Petit JM, Brunet JF, Magistretti PJ, Charriaut-Marlangue C, Regli L (2004) Distribution of Aquaporin 9 in the adult rat brain: preferential expression in catecholaminergic neurons and in glial cells. Neuroscience 128:27–38

    Article  CAS  PubMed  Google Scholar 

  • Badaut J, Brunet JF, Regli L (2007) Aquaporins in the brain: from aqueduct to “multi-duct”. Metab Brain Dis 22:251–263

    Article  CAS  PubMed  Google Scholar 

  • Badaut J, Fukuda AM, Jullienne A, Petry KG (2014) Aquaporin and brain diseases. Biochimica et Biophysica Acta (BBA)—General Subjects 1840:1554–1565

    Article  CAS  Google Scholar 

  • Barnett EM, Cassell MD, Perlman S (1993) Two neurotropic viruses, herpes simplex virus type 1 and mouse hepatitis virus, spread along different neural pathways from the main olfactory bulb. Neuroscience 57:1007–1025

    Article  CAS  PubMed  Google Scholar 

  • Bello-Morales R, Fedetz M, Alcina A, Tabares E, Lopez-Guerrero JA (2005) High susceptibility of a human oligodendroglial cell line to herpes simplex type 1 infection. J Neurovirol 11:190–198

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom T, Alestig K, Svennerholm B, Horal P, Skoldenberg B, Vahlne A (1990) Neurovirulence of herpes simplex virus types 1 and 2 isolates in diseases of the central nervous system. Eur J Clin Microbiol Infect Dis 9:751–757

    Article  CAS  PubMed  Google Scholar 

  • Bergström T, Conradi N, Hansson E, Liljeroth A, Vahlne A (1994) Resistance of rat CNS to brain stem infection with herpes simplex virus type 1. Acta Neuropathol 87:398–404

    Article  PubMed  Google Scholar 

  • Damasio AR, Van Hoesen GW (1985) The limbic system and the localisation of herpes simplex encephalitis. J Neurol Neurosurg Psychiatry 48:297–301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davis LE, Johnson RT (1979) An explanation for the localization of herpes simplex encephalitis? Ann Neurol 5:2–5

    Article  CAS  PubMed  Google Scholar 

  • De Tiege X, Rozenberg F, Heron B (2008) The spectrum of herpes simplex encephalitis in children. Eur J Paediatr Neurol 12:72–81

    Article  PubMed  Google Scholar 

  • Di Virgilio G, Clarke S, Pizzolato G, Schaffner T (1999) Cortical regions contributing to the anterior commissure in man. Exp Brain Res 124:1–7

    Article  PubMed  Google Scholar 

  • El-Habashi N, el El-Nahass S, Fukushi H, Hibi D, Sakai H, Sasseville V, Yanai T (2010) Experimental intranasal infection of equine herpesvirus 9 (EHV-9) in suckling hamsters: kinetics of viral transmission and inflammation in the nasal cavity and brain. J Neurovirol 16:242–248

    Article  PubMed  Google Scholar 

  • Elkjaer M, Vajda Z, Nejsum LN, Kwon T, Jensen UB, Amiry-Moghaddam M, Frokiaer J, Nielsen S (2000) Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain. Biochem Biophys Res Commun 276:1118–1128

    Article  CAS  PubMed  Google Scholar 

  • Esiri MM (1982) Herpes simplex encephalitis. An immunohistological study of the distribution of viral antigen within the brain. J Neurol Sci 54:209–226

    Article  CAS  PubMed  Google Scholar 

  • Esiri MM, Tomlinson AH (1984) Herpes simplex encephalitis. Immunohistological demonstration of spread of virus via olfactory and trigeminal pathways after infection of facial skin in mice. J Neurol Sci 64:213–217

    Article  CAS  PubMed  Google Scholar 

  • Eslinger PJ, Damasio AR, Van Hoesen GW (1982) Olfactory dysfunction in man: anatomical and behavioral aspects. Brain Cogn 1:259–285

    Article  CAS  PubMed  Google Scholar 

  • Faber HK, Gebhardt LP (1933) Localizations of the virus of poliomyelitis in the central nervous system during the preparalytic period, after intranasal instillation. The Journal of Experimental Medicine 57:933–954

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fossdal G, Vik-Mo EO, Sandberg C, Varghese M, Kaarbo M, Telmo E, Langmoen IA, Murrell W (2012) Aqp 9 and brain tumour stem cells. ScientificWorldJournal 2012:915176

    Article  PubMed Central  PubMed  Google Scholar 

  • Granerod JAH, Davies NW, Clewley JP, Walsh AL, Morgan D, Cunningham R, Zuckerman M, Mutton KJ, Solomon T, Ward KN, Lunn MP, Irani SR, Vincent A, Brown DW, Crowcroft NS, UK Health Protection Agency (HPA) Aetiology of Encephalitis Study Group (2011) Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. The Lancet infectious diseases 10:835–844

    Article  Google Scholar 

  • Heath CJ, Jones EG (1971) Interhemispheric pathways in the absence of a corpus callosum. An experimental study of commissural connexions in the marsupial phalanger. J Anat 109:253–270

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hjalmarsson A, Blomqvist P, Skoldenberg B (2007) Herpes simplex encephalitis in Sweden, 1990–2001: incidence, morbidity, and mortality. Clin Infect Dis 45:875–880

    Article  PubMed  Google Scholar 

  • Hudson SJ, Dix RD, Streilein JW (1991) Induction of encephalitis in SJL mice by intranasal infection with herpes simplex virus type 1: a possible model of herpes simplex encephalitis in humans. J Infect Dis 163:720–727

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi K, Kuwahara M, Gu Y, Tanaka Y, Marumo F, Sasaki S (1998) Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol. Biochem Biophys Res Commun 244:268–274

    Article  CAS  PubMed  Google Scholar 

  • Jennische E, Bergstrom T, Johansson M, Nystrom K, Tarkowski A, Hansson HA, Lange S (2008) The peptide AF-16 abolishes sickness and death at experimental encephalitis by reducing increase of intracranial pressure. Brain Res 1227:189–197

    Article  CAS  PubMed  Google Scholar 

  • Johnson RT (1964) The pathogenesis of herpes virus encephalitis I. Virus pathways to the nervous system of suckling mice demonstrated by fluorescent antibody staining. J Exp Med 119:343–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jouandet ML, Hartenstein V (1983) Basal telencephalic origins of the anterior commissure of the rat. Exp Brain Res 50:183–192

    CAS  PubMed  Google Scholar 

  • Kennedy PG, Chaudhuri A (2002) Herpes simplex encephalitis. J Neurol Neurosurg Psychiatry 73:237–238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kennedy PG, Steiner I (2013) Recent issues in herpes simplex encephalitis. J Neurovirol 19:346–350

  • Kiernan JA (2012) Anatomy of the temporal lobe. Epilepsy Res Treat 2012:176157

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kristensson K, Nennesmo L, Persson L, Lycke E (1982) Neuron to neuron transmission of herpes simplex virus. Transport of virus from skin to brainstem nuclei. J Neurol Sci 54:149–156

    Article  CAS  PubMed  Google Scholar 

  • Kuypers HG, Ugolini G (1990) Viruses as transneuronal tracers. Trends Neurosci 13:71–75

    Article  CAS  PubMed  Google Scholar 

  • Lehmann GL, Gradilone SA, Marinelli RA (2004) Aquaporin water channels in central nervous system. Curr Neurovasc Res 1:293–303

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Yang M, Qiu GP, Zhuo F, Yu WH, Sun SQ, Xiu Y (2012) Aquaporin 9 in rat brain after severe traumatic brain injury. Arq Neuropsiquiatr 70:214–220

    PubMed  Google Scholar 

  • Ludlow M, Duprex WP, Cosby SL, Allen IV, McQuaid S (2008) Advantages of using recombinant measles viruses expressing a fluorescent reporter gene with vibratome slice technology in experimental measles neuropathogenesis. Neuropathol Appl Neurobiol 34:424–434

  • Mann DMA, Tinkler AM, Yates PO (1983) Neurological disease and herpes simplex virus. An immunohistochemical study. Acta Neuropathol 60:24–28

    Article  CAS  PubMed  Google Scholar 

  • Martinez Torres FJ, Volcker D, Dorner N, Lenhard T, Nielsen S, Haas J, Kiening K, Meyding-Lamade U (2007) Aquaporin 4 regulation during acute and long-term experimental Herpes simplex virus encephalitis. J Neurovirol 13:38–46

    Article  CAS  PubMed  Google Scholar 

  • McGrath N, Anderson NE, Croxson MC, Powell KF (1997) Herpes simplex encephalitis treated with acyclovir: diagnosis and long term outcome. Journal of Neurology, Neurosurgery & Psychiatry 63:321–326

    Article  CAS  Google Scholar 

  • Misra UK, Tan CT, Kalita J (2008) Viral encephalitis and epilepsy. Epilepsia 49(Suppl 6):13–18

    Article  PubMed  Google Scholar 

  • Moon SM, Kim T, Lee EM, Kang JK, Lee SA, Choi SH (2014) Comparison of clinical manifestations, outcomes and cerebrospinal fluid findings between herpes simplex type 1 and type 2 central nervous system infections in adults. J Med Virol 86:1766–1771

    Article  PubMed  Google Scholar 

  • Mori I, Nishiyama Y, Yokochi T, Kimura Y (2005) Olfactory transmission of neurotropic viruses. J Neurovirol 11:129–137

    Article  PubMed  Google Scholar 

  • Nagashima K, Kobayashi Y, Kojima H, Hasegawa H, Kurata T (1998) Herpes encephalitis and paraneoplastic limbic encephalitis. Neuropathology 18:215–221

    Article  Google Scholar 

  • Namvar L, Olofsson S, Bergstrom T, Lindh M (2005) Detection and typing of Herpes Simplex virus (HSV) in mucocutaneous samples by TaqMan PCR targeting a gB segment homologous for HSV types 1 and 2. J Clin Microbiol 43:2058–2064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Norgren RB Jr, Lehman MN (1998) Herpes simplex virus as a transneuronal tracer. Neurosci Biobehav Rev 22:695–708

    Article  PubMed  Google Scholar 

  • Nyström K, Biller M, Grahn A, Lindh M, Larson G, Olofsson S (2004) Real time PCR for monitoring regulation of host gene expression in herpes simplex virus type 1-infected human diploid cells. J Virol Methods 118:83–94

    Article  PubMed  Google Scholar 

  • Oliva AA Jr, Kang Y, Truettner JS, Sanchez-Molano J, Furones C, Yool AJ, Atkins CM (2011) Fluid-percussion brain injury induces changes in aquaporin channel expression. Neuroscience 180:272–279

    Article  CAS  PubMed  Google Scholar 

  • Oyanguren B, Sanchez V, Gonzalez FJ, de Felipe A, Esteban L, Lopez-Sendon JL, Garcia-Barragan N, Martinez-San Millan J, Masjuan J, Corral I (2013) Limbic encephalitis: a clinical-radiological comparison between herpetic and autoimmune etiologies. Eur J Neurol

  • Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nature reviews Neuroscience 14:265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patel MD, Toussaint N, Charles-Edwards GD, Lin JP, Batchelor PG (2010) Distribution and fibre field similarity mapping of the human anterior commissure fibres by diffusion tensor imaging. MAGMA 23:399–408

    Article  PubMed  Google Scholar 

  • Perlman S, Evans G, Afifi A (1990) Effect of olfactory bulb ablation on spread of a neurotropic coronavirus into the mouse brain. J Exp Med 172:1127–1132

    Article  CAS  PubMed  Google Scholar 

  • Raschilas F, Wolff M, Delatour F, Chaffaut C, De Broucker T, Chevret S, Lebon P, Canton P, Rozenberg F (2002) Outcome of and prognostic factors for herpes simplex encephalitis in adult patients: results of a multicenter study. Clin Infect Dis 35:254–260

    Article  PubMed  Google Scholar 

  • Riancho J, Delgado-Alvarado M, Sedano MJ, Polo JM, Berciano J (2013) Herpes simplex encephalitis: clinical presentation, neurological sequelae and new prognostic factors. Ten years of experience. Neurol Sci

  • Risse GL, LeDoux J, Springer SP, Wilson DH, Gazzaniga MS (1978) The anterior commissure in man: functional variation in a multisensory system. Neuropsychologia 16:23–31

    Article  CAS  PubMed  Google Scholar 

  • Shipley MT, Ennis M (1996) Functional organization of olfactory system. J Neurobiol 30:123–176

    Article  CAS  PubMed  Google Scholar 

  • Sili U, Kaya A, Mert A (2014). Herpes simplex virus encephalitis: Clinical manifestations, diagnosis and outcome in 106 adult patients. J Clin Virol.

  • Skoldenberg B, Forsgren M, Alestig K, Bergstrom T, Burman L, Dahlqvist E, Forkman A, Fryden A, Lovgren K, Norlin K et al (1984) Acyclovir versus vidarabine in herpes simplex encephalitis. Randomised multicentre study in consecutive Swedish patients. Lancet 2:707–711

    Article  CAS  PubMed  Google Scholar 

  • Stahl JP, Mailles A, De Broucker T (2012) Herpes simplex encephalitis and management of acyclovir in encephalitis patients in France. Epidemiol Infect 140:372–381

    Article  CAS  PubMed  Google Scholar 

  • Steiner I (2011) Herpes simplex virus encephalitis: new infection or reactivation? Curr Opin Neurol 24:268–274

    Article  PubMed  Google Scholar 

  • Studahl M, Rosengren L, Günther G, Hagberg L (2000) Difference in pathogenesis between herpes simplex virus type 1 encephalitis and tick-borne encephalitis demonstrated by means of cerebrospinal fluid markers of glial and neuronal destruction. J Neurol 247:636–642

    Article  CAS  PubMed  Google Scholar 

  • Thomas EE, Lau AS, Kim SU, Osborne D, Kastrukoff LF (1991) Variation in resistance to herpes simplex virus type 1 of oligodendrocytes derived from inbred strains of mice. J Gen Virol 72(Pt 9):2051–2057

    Article  PubMed  Google Scholar 

  • Toft-Hansen H, Fuchtbauer L, Owens T (2011) Inhibition of reactive astrocytosis in established experimental autoimmune encephalomyelitis favors infiltration by myeloid cells over T cells and enhances severity of disease. Glia 59:166–176

    Article  PubMed  Google Scholar 

  • Turner SL, Jenkins FJ (1997) The roles of herpes simplex virus in neuroscience. J Neurovirol 3:110–125

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Jin R, Tian P, Zhuo Z (2009) Enhanced expression of aquaporin-9 in rat brain edema induced by bacterial lipopolysaccharides. J Huazhong Univ Sci Technolog Med Sci 29:150–155

    Article  CAS  PubMed  Google Scholar 

  • Whitley RJ (2006) Herpes simplex encephalitis: adolescents and adults. Antiviral Res 71:141–148

    Article  CAS  PubMed  Google Scholar 

  • Whitley R, Lakeman AD, Nahmias A, Roizman B (1982) Dna restriction-enzyme analysis of herpes simplex virus isolates obtained from patients with encephalitis. N Engl J Med 307:1060–1062

    Article  CAS  PubMed  Google Scholar 

  • Whitley RJ, Alford CA, Hirsch MS, Schooley RT, Luby JP, Aoki FY, Hanley D, Nahmias AJ, Soong SJ (1986) Vidarabine versus acyclovir therapy in herpes simplex encephalitis. N Engl J Med 314:144–149

    Article  CAS  PubMed  Google Scholar 

  • Yool AJ (2007) Aquaporins: multiple roles in the central nervous system. Neuroscientist 13:470–485

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Maria Johansson for skilful technical assistance, Rickard Nordén and Anette Roth for technical advice and Oluf Andersen for fruitful discussions.

This work was supported by grants from the ALF Foundation at Sahlgrenska University Hospital (grant no 145–841) and the Swedish Research Council, Medicine (grant no 521-2011-3297).

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Bergström.

Additional information

E. Jennische and C. E. Eriksson have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jennische, E., Eriksson, C.E., Lange, S. et al. The anterior commissure is a pathway for contralateral spread of herpes simplex virus type 1 after olfactory tract infection. J. Neurovirol. 21, 129–147 (2015). https://doi.org/10.1007/s13365-014-0312-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-014-0312-0

Keywords

Navigation