Skip to main content
Log in

Bacillus thuringiensis Cry11Ba works synergistically with Cry4Aa but not with Cry11Aa for toxicity against mosquito Culex pipiens (Diptera: Culicidae) larvae

  • Original Research Paper
  • Published:
Applied Entomology and Zoology Aims and scope Submit manuscript

Abstract

A 2,175-bp modified gene (cry11Ba-S1) encoding Cry11Ba from Bacillus thuringiensis subsp. jegathesan was designed and the recombinant protein was expressed as a fusion protein with glutathione S-transferase in Escherichia coli. The recombinant Cry11Ba was highly toxic against Culex pipiens mosquito larvae, being nine and 17 times more toxic than mosquitocidal Cry4Aa and Cry11Aa from Bacillus thuringiensis subsp. israelensis, respectively. Interestingly, a further increase in the toxicity of the recombinant Cry11Ba was achieved by mixing with Cry4Aa, but not with Cry11Aa. These findings suggested that Cry11Ba worked synergistically with Cry4Aa, but not with Cry11Aa, in exhibiting toxicity against C. pipiens larvae. On the other hand, the amount of Cry toxin bound to brush border membrane vesicles (BBMVs) did not significantly change between individual toxins and the toxin mixtures, suggesting that the increase in toxins binding to BBMVs was not a reason for the observed synergistic effect. It is generally accepted that synergism of toxins is a potentially powerful tool for enhancing insecticidal activity and managing Cry toxin resistance in mosquitoes. The mixture of Cry4Aa and Cry11Ba in order to increase toxicity would be very valuable in terms of mosquito control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3a–f
Fig. 4a–f
Fig. 5a, b

Similar content being viewed by others

References

  • Abdullah MA, Alzate O, Mohammad M, McNall RJ, Adang MJ, Dean DH (2003) Introduction of Culex toxicity into Bacillus thuringiensis Cry4Ba by protein engineering. Appl Environ Microbiol 69:5343–5353. doi:10.1128/AEM.69.9.5343-5353.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdullah MA, Valaitis AP, Dean DH (2006) Identification of a Bacillus thuringiensis Cry11Ba toxin-binding aminopeptidase from the mosquito, Anopheles quadrimaculatus. BMC Biochem 7:16. doi:10.1186/1471-2091-7-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Ben-Dov E (2014) Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins. Toxins 6:1222–1243. doi:10.3390/toxins6041222

    Article  PubMed  PubMed Central  Google Scholar 

  • Boonserm P, Min M, Angsuthanasombat C, Lescar J (2006) Structure of the functional form of the mosquito-larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.80-angstorm resolution. J Bacteriol 188:3391–3401. doi:10.1128/JB.188.9.3391-3401.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breman JG, Alilio MS, Mills A (2004) Conquering the intolerable burden of malaria: what’s new, what’s needed: a summary. Am J Trop Med Hyg 71:1–15

    PubMed  Google Scholar 

  • Chen J, Aimanova KG, Pan S, Gill SS (2009) Identification and characterization of Aedes aegypti aminopeptidase N as a putative receptor of Bacillus thuringiensis Cry11A toxin. Insect Biochem Mol Biol 9:688–696. doi:10.1016/j.ibmb.2009.08.003

    Article  Google Scholar 

  • Cheong H, Gill SS (1997) Cloning and characterization of a cytolytic and mosquitocidal delta-endotoxin from Bacillus thuringiensis subsp. jegathesan. Appl Environ Microbiol 63:3254–3260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crickmore N, Bone EJ, Williams JA, Ellar DJ (1995) Contribution of the individual components of the δ-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp. israelensis. FEMS Microbiol Lett 131:249–254

    CAS  Google Scholar 

  • Delécluse A, Poncet S, Klier A, Rapoport G (1993) Expression of cryIVA and cryIVB genes, independently or in combination, in a crystal-negative strain of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 59:3922–3927

    PubMed  PubMed Central  Google Scholar 

  • Delécluse A, Rosso ML, Ragni A (1995) Cloning and expression of a novel toxin gene from Bacillus thuringiensis subsp. jegathesan encoding a highly mosquitocidal protein. Appl Environ Microbiol 61:4230–4235

    PubMed  PubMed Central  Google Scholar 

  • Fernandez LE, Aimanova KG, Gill SS, Bravo A, Soberón M (2006) A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae. Biochem J 394:77–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Luna MT, Lanz-Mendoza H, Gill SS, Bravo A, Soberon M, Miranda-Rios J (2010) An alpha-amylase is a novel receptor for Bacillus thuringiensis ssp. israelensis Cry4Ba and Cry11Aa toxins in the malaria vector mosquito Anopheles albimanus (Diptera: Culicidae). Environ Microbiol 12:746–757. doi:10.1111/j.1462-2920.2009.02117.x

    Article  CAS  PubMed  Google Scholar 

  • Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, London

    Google Scholar 

  • Georghiou GP, Wirth MC (1997) Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae). Appl Environ Microbiol 63:1095–1101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayakawa T, Howlader MT, Yamagiwa M, Sakai H (2008) Design and construction of a synthetic Bacillus thuringiensis Cry4Aa gene-Hyperexpression in Escherichia coli. Appl Microbiol Biotechnol 80:1033–1037. doi:10.1007/s00253-008-1560-9

    Article  CAS  PubMed  Google Scholar 

  • Howlader MT, Kagawa Y, Sakai H, Hayakawa T (2009) Biological properties of loop-replaced mutants of Bacillus thuringiensis mosquitocidal Cry4Aa. J Biosci Bioeng 108:179–183. doi:10.1016/j.jbiosc.2009.03.016

    Article  CAS  PubMed  Google Scholar 

  • Howlader MT, Kagawa Y, Miyakawa A, Yamamoto A, Taniguchi T, Hayakawa T, Sakai H (2010) Alanine scanning analyses of the three major loops in domain II of Bacillus thuringiensis mosquitocidal toxin Cry4Aa. Appl Environ Microbiol 76:860–865. doi:10.1128/AEM.02175-09

    Article  CAS  PubMed  Google Scholar 

  • Kawalek MD (1998) Cloning and characterization of mosquitocidal genes from Bacillus thuringiensis subsp. jegathesan. Ph.D. dissertation, University of California, Riverside

  • Otieno-Ayayo ZN, Zaritsky A, Wirth MC, Manasherob R, Khasdan V, Cahan R, Ben-Dov E (2008) Variations in the mosquito larvicidal activities of toxins from Bacillus thuringiensis ssp. israelensis. Environ Microbiol 10:2191–2199. doi:10.1111/j.1462-2920.2008.01696.x

    Article  CAS  PubMed  Google Scholar 

  • Pérez C, Fernandez LE, Sun J, Folch JL, Gill SS, Soberón M, Bravo A (2005) Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proc Natl Acad Sci USA 102:18303–18308. doi:10.1073/pnas.0505494102

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez C, Muñoz-Garay C, Portugal LC, Sánchez J, Gill SS, Soberón M, Bravo A (2007) Bacillus thuringiensis ssp. israelensis Cyt1Aa enhances activity of Cry11Aa toxin by facilitating the formation of a pre-pore oligomeric structure. Cell Microbiol 9:2931–2937. doi:10.1111/j.1462-5822.2007.01007.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Poncet S, Delécluse A, Klier A, Rapoport G (1995) Evaluation of synergistic interactions among the CryIVA, CryIVB, and CryIVD toxic components of B. thuringiensis subsp. israelensis crystals. J Invertebr Pathol 66:131–135

    Article  CAS  Google Scholar 

  • Rosso ML, Delécluse A (1997) Contribution of the 65-kilodalton protein encoded by the cloned gene cry19A to the mosquitocidal activity of Bacillus thuringiensis subsp. jegathesan. Appl Environ Microbiol 63:4449–4455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Servant P, Rosso ML, Hamon S, Poncet S, Delécluse A, Rapoport G (1999) Production of Cry11A and Cry11Ba toxins in Bacillus sphaericus confers toxicity towards Aedes aegypti and resistant Culex populations. Appl Environ Microbiol 65:3021–3026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Zhao Q, Xia L, Ding X, Hu Q, Federici BA, Park HW (2013) Identification and characterization of three previously undescribed crystal proteins from Bacillus thuringiensis subsp. jegathesan. Appl Environ Microbiol 79:3364–3370. doi:10.1128/AEM.00078-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabashnik BE (1992) Evaluation of synergism among Bacillus thuringiensis toxins. Appl Environ Microbiol 58:3343–3346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wirth MC, Georghiou GP, Federici BA (1997) CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito, Culex quinquefasciatus. Proc Natl Acad Sci USA 94:10536–10540. doi:10.1073/pnas.94.20.10536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirth MC, Yang Y, Walton WE, Federici BA, Berry C (2007) Mtx toxins synergize Bacillus sphaericus and Cry11Aa against susceptible and insecticide-resistant Culex quinquefasciatus larvae. Appl Environ Microbiol 73:6066–6071. doi:10.1128/AEM.00654-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirth MC, Walton WE, Federici BA (2012) Inheritance, stability, and dominance of cry resistance in Culex quinquefasciatus (Diptera: Culicidae) selected with the three cry toxins of Bacillus thuringiensis subsp. israelensis. J Med Entomol 49:886–894. doi:10.1603/ME11192

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Johnson JJ, Federici BA (1994) Synergism of mosquitocidal toxicity between CytA and CryIVD proteins using inclusions produced from cloned genes of Bacillus thuringiensis. Mol Microbiol 13:965–972. doi:10.1111/j.1365-2958.1994.tb00488.x

    Article  CAS  PubMed  Google Scholar 

  • Yamagiwa M, Sakagawa K, Sakai H (2004) Functional analysis of two processed fragments of Bacillus thuringiensis Cry11A toxin. Biosci Biotechnol Biochem 68:523–528. doi:10.1271/bbb.68.523

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Hua G, Andacht TM, Adang MJ (2008) A 106-kDa aminopeptidase is a putative receptor for Bacillus thuringiensis Cry11Ba toxin in the mosquito Anopheles gambiae. Biochemistry 47:11263–11272. doi:10.1021/bi801181g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Hua G, Bayyareddy K, Adang MJ (2013) Analyses of α-amylase and α-glucosidase in the malaria vector mosquito, Anopheles gambiae, as receptors of Cry11Ba toxin of Bacillus thuringiensis subsp. jegathesan. Insect Biochem Mol Biol 43:907–915. doi:10.1016/j.ibmb.2013.07.003

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

C. pipiens eggs were kindly supplied by the Research and Development Laboratory at Dainihon Jochugiku, Osaka. This work was supported by the Japan Society for the Promotion of Science KAKENHI (Grant Nos. JP24380034 and JP26660268).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Hayakawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13355_2016_454_MOESM1_ESM.pptx

Supplemental Fig. 1 Alignment of the native and the synthetic cry11Ba gene. The amino acid sequence is shown above the nucleotide sequence. The nucleotide residues modified in accordance with the codon preference of E. coli gene are indicated. Nucleotide and amino acid numbers are shown on the right. Supplemental Fig. 2 Schematic structure of Cry protoxins and the recombinant Cry toxins used in this study. Insecticidal toxin regions are shaded. Arrow heads Internal cleavage site located in the insecticidal toxin region. After ingestion by susceptible mosquito larvae, Cry toxins are processed by residential proteases in the midgut, and the protease-resistant segments which form a heterodimer as an insecticidal toxin are generated (PPTX 182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayakawa, T., Yoneda, N., Okada, K. et al. Bacillus thuringiensis Cry11Ba works synergistically with Cry4Aa but not with Cry11Aa for toxicity against mosquito Culex pipiens (Diptera: Culicidae) larvae. Appl Entomol Zool 52, 61–68 (2017). https://doi.org/10.1007/s13355-016-0454-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13355-016-0454-z

Keywords

Navigation