Skip to main content
Log in

Genome-wide detection of selective signatures in Simmental cattle

  • Animal Genetics ∙ Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Artificial selection has greatly improved the beef production performance and changed its genetic basis. High-density SNP markers provide a way to track these changes and use selective signatures to search for the genes associated with artificial selection. In this study, we performed extended haplotype homozygosity (EHH) tests based on Illumina BovineSNP50 (54 K) Chip data from 942 Simmental cattle to identify significant core regions containing selective signatures, then verified the biological significance of these identified regions based on some commonly used bioinformatics analyses. A total of 224 regions over the whole genome in Simmental cattle showing the highest significance and containing some important functional genes, such as GHSR, TG and CANCNA2D1 were chosen. We also observed some significant terms in the enrichment analyses of second GO terms and KEGG pathways, indicating that these genes are associated with economically relevant cattle traits. This is the first detection of selection signature in Simmental cattle. Our findings significantly expand the selection signature map of the cattle genome, and identify functional candidate genes under positive selection for future genetic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barendse W, Bunch R, Thomas M, Armitage S, Baud S, Donaldson N (2004) The TG5 thyroglobulin gene test for a marbling quantitative trait loci evaluated in feedlot cattle. Aust J Exp Agric 44(7):669–674. doi:10.1071/EA02156

    Article  CAS  Google Scholar 

  • Black WC, Baer CF, Antolin MF, DuTeau NM (2001) Population genomics: genome-wide sampling of insect populations. Annu Rev Entomol 46:441–469. doi:10.1146/annurev.ento.46.1.441

    Article  CAS  PubMed  Google Scholar 

  • Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81(5):1084–1097. doi:10.1086/521987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Casas E, White SN, Riley DG, Smith TP, Brenneman RA, Olson TA, Johnson DD, Coleman SW, Bennett GL, Chase CC Jr (2005) Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle. J Anim Sci 83(1):13–19

    CAS  PubMed  Google Scholar 

  • Cases S, Zhou P, Shillingford JM, Wiseman BS, Fish JD, Angle CS, Hennighausen L, Werb Z, Farese RV Jr (2004) Development of the mammary gland requires DGAT1 expression in stromal and epithelial tissues. Development 131(13):3047–3055. doi:10.1242/dev.01158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Colinet FG, Vanderick S, Charloteaux B, Eggen A, Gengler N, Renaville B, Brasseur R, Portetelle D, Renaville R (2009) Genomic location of the bovine growth hormone secretagogue receptor (GHSR) gene and investigation of genetic polymorphism. Anim Biotechnol 20(1):28–33. doi:10.1080/10495390802602926

    Article  CAS  PubMed  Google Scholar 

  • da Huang W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13. doi:10.1093/nar/gkn923

    Article  PubMed Central  Google Scholar 

  • Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155(3):1405–1413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flori L, Fritz S, Jaffrezic F, Boussaha M, Gut I, Heath S, Foulley JL, Gautier M (2009) The genome response to artificial selection: a case study in dairy cattle. PLoS One 4(8):e6595. doi:10.1371/journal.pone.0006595

    Article  PubMed Central  PubMed  Google Scholar 

  • Hou GY, Yuan ZR, Gao X, Li JY, Gao HJ, Chen JB, Xu SZ (2010) Genetic polymorphisms of the CACNA2D1 gene and their association with carcass and meat quality traits in cattle. Biochem Genet 48(9–10):751–759. doi:10.1007/s10528-010-9357-9

    Article  CAS  PubMed  Google Scholar 

  • McKay SD, Schnabel RD, Murdoch BM, Matukumalli LK, Aerts J, Coppieters W, Crews D, Dias Neto E, Gill CA, Gao C, Mannen H, Stothard P, Wang Z, Van Tassell CP, Williams JL, Taylor JF, Moore SS (2007) Whole genome linkage disequilibrium maps in cattle. BMC Genet 8:74. doi:10.1186/1471-2156-8-74

    Article  PubMed Central  PubMed  Google Scholar 

  • Pan D, Zhang S, Jiang J, Jiang L, Zhang Q, Liu J (2013) Genome-wide detection of selective signature in Chinese Holstein. PLoS One 8(3):e60440. doi:10.1371/journal.pone.0060440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qanbari S, Pimentel EC, Tetens J, Thaller G, Lichtner P, Sharifi AR, Simianer H (2010) A genome-wide scan for signatures of recent selection in Holstein cattle. Anim Genet 41(4):377–389. doi:10.1111/j.1365-2052.2009.02016.x

    CAS  PubMed  Google Scholar 

  • Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, Schaffner SF, Gabriel SB, Platko JV, Patterson NJ, McDonald GJ, Ackerman HC, Campbell SJ, Altshuler D, Cooper R, Kwiatkowski D, Ward R, Lander ES (2002) Detecting recent positive selection in the human genome from haplotype structure. Nature 419(6909):832–837. doi:10.1038/nature01140

    Article  CAS  PubMed  Google Scholar 

  • Salih H, Adelson DL (2009) QTL global meta-analysis: are trait determining genes clustered? BMC Genomics 10:184. doi:10.1186/1471-2164-10-184

    Article  PubMed Central  PubMed  Google Scholar 

  • Stone RT, Rexroad CE 3rd, Smith TP (1999) Bovine UCP2 and UCP3 map to BTA15. Anim Genet 30(5):378–381

    Article  CAS  PubMed  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tenesa A, Navarro P, Hayes BJ, Duffy DL, Clarke GM, Goddard ME, Visscher PM (2007) Recent human effective population size estimated from linkage disequilibrium. Genome Res 17(4):520–526. doi:10.1101/gr.6023607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thaller G, Kuhn C, Winter A, Ewald G, Bellmann O, Wegner J, Zuhlke H, Fries R (2003) DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle. Anim Genet 34(5):354–357

    Article  CAS  PubMed  Google Scholar 

  • Tian D, Araki H, Stahl E, Bergelson J, Kreitman M (2002) Signature of balancing selection in Arabidopsis. Proc Natl Acad Sci U S A 99(17):11525–11530. doi:10.1073/pnas.172203599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive selection in the human genome. PLoS Biol 4(3):e72. doi:10.1371/journal.pbio.0040072

    Article  PubMed Central  PubMed  Google Scholar 

  • Walsh EC, Sabeti P, Hutcheson HB, Fry B, Schaffner SF, de Bakker PI, Varilly P, Palma AA, Roy J, Cooper R, Winkler C, Zeng Y, de The G, Lander ES, O'Brien S, Altshuler D (2006) Searching for signals of evolutionary selection in 168 genes related to immune function. Hum Genet 119(1–2):92–102. doi:10.1007/s00439-005-0090-0

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wang B, Tang K, Lee EJ, Chong SS, Lee CG (2005) A functional polymorphism within the MRP1 gene locus identified through its genomic signature of positive selection. Hum Mol Genet 14(14):2075–2087. doi:10.1093/hmg/ddi212

    Article  CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating f-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Winter A, van Eckeveld M, Bininda-Emonds OR, Habermann FA, Fries R (2003) Genomic organization of the DGAT2/MOGAT gene family in cattle (Bos taurus) and other mammals. Cytogenet Genome Res 102(1-4):42–47

    Article  CAS  PubMed  Google Scholar 

  • Yuan ZR, Xu SZ (2011) Novel SNPs of the bovine CACNA2D1 gene and their association with carcass and meat quality traits. Mol Biol Rep 38(1):365–370. doi:10.1007/s11033-010-0117-z

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Bailey DK, Awad T, Liu G, Xing G, Cao M, Valmeekam V, Retief J, Matsuzaki H, Taub M, Seielstad M, Kennedy GC (2006) A whole genome long-range haplotype (WGLRH) test for detecting imprints of positive selection in human populations. Bioinformatics 22(17):2122–2128. doi:10.1093/bioinformatics/btl365

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the 12th “Five-Year” National Science and Technology Support Project (2011BAD28B04) basic research fund program, Cattle Breeding Innovative Research Team (cxgc-ias-03), National High Technology Research and Development Program of China (863 Program 2013AA102505-4) and National Natural Science Foundations of China (31372294).

Open access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junya Li or HuiJiang Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, H., Wu, Y., Qi, X. et al. Genome-wide detection of selective signatures in Simmental cattle. J Appl Genetics 55, 343–351 (2014). https://doi.org/10.1007/s13353-014-0200-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-014-0200-6

Keywords

Navigation