Skip to main content
Log in

The −112G > A polymorphism of the secretoglobin 3A2 (SCGB3A2) gene encoding uteroglobin-related protein 1 (UGRP1) increases risk for the development of Graves’ disease in subsets of patients with elevated levels of immunoglobulin E

  • Human Genetics ∙ Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

The human secretoglobin 3A2 (SCGB3A2) gene encoding secretory uteroglobin-related protein 1 (UGRP1) resides on the chromosome region 5q31-33 that harbors a susceptibility locus to several autoimmune and inflammatory diseases, including asthma and Graves’ disease (GD). Recently, association between the marker rs1368408 (−112G > A), located in the promoter region of the SCGB3A2 gene, and susceptibility to GD was found in Chinese and UK Caucasians. The study aim was to evaluate whether this polymorphism confers GD susceptibility in a large population cohort comprising 1,474 Russian GD patients and 1,619 controls. The marker rs1368408 was studied using a TaqMan allele discrimination assay. Serum levels of UGRP1 and immunoglobulin E (IgE) were assessed using enzyme-linked immunosorbent assay (ELISA) analyses. Association between the allele A of SCGB3A2 and a higher risk of GD (odds ratio [OR] = 1.33, P = 2.9 × 10−5) was shown. Both affected and non-affected carriers of the higher risk genotype A/A had significantly decreased levels of serum UGRP1 compared to the subjects homozygous for G/G (93 ± 37 pg/ml vs. 132 ± 45 pg/ml, P = 0.0011 for GD patients; 77 ± 28 pg/ml vs. 119 ± 33 pg/ml, P = 0.0019 for controls). Serum IgE levels were significantly higher in non-affected subjects homozygous for A/A compared to control individuals homozygous for G/G (153 ± 46 IU/ml vs. 122 ± 40 IU/ml, P = 0.0095). Our data suggest that the carriage of the SCGB3A2 −112A/A variant increases the risk for GD in subsets of patients with elevated levels of IgE, a hallmark of allergic asthma. Therefore, the SCGB3A2 −112G > A polymorphism may be considered as a likely marker linking susceptibility to allergy/asthma and GD on chromosome 5q31-33.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akamizu T, Hiratani H, Ikegami S, Rich SS, Bowden DW (2003) Association study of autoimmune thyroid disease at 5q23-q33 in Japanese patients. J Hum Genet 48:236–242

    Article  PubMed  CAS  Google Scholar 

  • Arredouani M, Yang Z, Ning Y, Qin G, Soininen R, Tryggvason K et al (2004) The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. J Exp Med 200:267–272

    Article  PubMed  CAS  Google Scholar 

  • Batra J, Niphadkar PV, Sharma SK, Ghosh B (2005) Uteroglobin-related protein 1(UGRP1) gene polymorphisms and atopic asthma in the Indian population. Int Arch Allergy Immunol 136:1–6

    Article  PubMed  CAS  Google Scholar 

  • Bin LH, Nielson LD, Liu X, Mason RJ, Shu HB (2003) Identification of uteroglobin-related protein 1 and macrophage scavenger receptor with collagenous structure as a lung-specific ligand–receptor pair. J Immunol 171:924–930

    PubMed  CAS  Google Scholar 

  • Blaiss MS (2005) Epidemiology and pathophysiology of immunoglobulin E-mediated asthma. Allergy Asthma Proc 26:423–427

    PubMed  CAS  Google Scholar 

  • Bland JM, Altman DG (2000) Statistics notes. The odds ratio. Br Med J 320:1468

    Article  CAS  Google Scholar 

  • Chiba Y, Kusakabe T, Kimura S (2004) Decreased expression of uteroglobin-related protein 1 in inflamed mouse airways is mediated by IL-9. Am J Physiol Lung Cell Mol Physiol 287:L1193–L1198

    Article  PubMed  CAS  Google Scholar 

  • Chiba Y, Srisodsai A, Supavilai P, Kimura S (2005) Interleukin-5 reduces the expression of uteroglobin-related protein (UGRP) 1 gene in allergic airway inflammation. Immunol Lett 97:123–129

    Article  PubMed  CAS  Google Scholar 

  • Chiba Y, Kurotani R, Kusakabe T, Miura T, Link BW, Misawa M et al (2006) Uteroglobin-related protein 1 expression suppresses allergic airway inflammation in mice. Am J Respir Crit Care Med 173:958–964

    Article  PubMed  CAS  Google Scholar 

  • Chong KK, Chiang SW, Wong GW, Tam PO, Ng TK, Hu YJ et al (2008) Association of CTLA-4 and IL-13 gene polymorphisms with Graves’ disease and ophthalmopathy in Chinese children. Invest Ophthalmol Vis Sci 49:2409–2415

    Article  PubMed  Google Scholar 

  • Chu X, Dong C, Lei R, Sun L, Wang Z, Dong Y et al (2009a) Polymorphisms in the interleukin 3 gene show strong association with susceptibility to Graves’ disease in Chinese population. Genes Immun 10:260–266

    Article  PubMed  CAS  Google Scholar 

  • Chu X, Dong Y, Shen M, Sun L, Dong C, Wang Y et al (2009b) Polymorphisms in the ADRB2 gene and Graves disease: a case–control study and a meta-analysis of available evidence. BMC Med Genet 10:26

    Article  PubMed  Google Scholar 

  • Costagliola S, Swillens S, Niccoli P, Dumont JE, Vassart G, Ludgate M (1992) Binding assay for thyrotropin receptor autoantibodies using the recombinant receptor protein. J Clin Endocrinol Metab 75:1540–1544

    Article  PubMed  CAS  Google Scholar 

  • Feldt-Rasmussen U, Høier-Madsen M, Bech K, Blichert-Toft M, Bliddal H, Date J et al (1991) Anti-thyroid peroxidase antibodies in thyroid disorders and non-thyroid autoimmune diseases. Autoimmunity 9:245–254

    Article  PubMed  CAS  Google Scholar 

  • Heinzmann A, Dietrich H, Deichmann KA (2003) Association of uteroglobulin-related protein 1 with bronchial asthma. Int Arch Allergy Immunol 131:291–295

    Article  PubMed  CAS  Google Scholar 

  • Heward JM, Nithiyananthan R, Allahabadia A, Gibson S, Franklyn JA, Gough SC (2001) No association of an interleukin 4 gene promoter polymorphism with Graves’ disease in the United Kingdom. J Clin Endocrinol Metab 86:3861–3863

    Article  PubMed  CAS  Google Scholar 

  • Hidaka Y, Amino N, Iwatani Y, Itoh E, Matsunaga M, Tamaki H (1993) Recurrence of thyrotoxicosis after attack of allergic rhinitis in patients with Graves’ disease. J Clin Endocrinol Metab 77:1667–1670

    Article  PubMed  CAS  Google Scholar 

  • Hidaka Y, Masai T, Sumizaki H, Takeoka K, Tada H, Amino N (1996) Onset of Graves’ thyrotoxicosis after an attack of allergic rhinitis. Thyroid 6:349–351

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Yoshida W, Noguchi T, Asaba K, Nishioka T, Takao T et al (2004) Lack of association between IL-12B gene polymorphism and autoimmune thyroid disease in Japanese patients. Endocr J 51:609–13

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Wang X, Saito J, Tanino Y, Ishida T, Iwaki D et al (2008) Plasma UGRP1 levels associate with promoter G-112A polymorphism and the severity of asthma. Allergol Int 57:57–64

    Article  PubMed  CAS  Google Scholar 

  • Jazdzewski K, Bednarczuk T, Stepnowska M, Liyanarachchi S, Suchecka-Rachon K, Limon J et al (2007) beta-2-adrenergic receptor gene polymorphism confers susceptibility to Graves’ disease. Int J Mol Med 19:181–186

    PubMed  Google Scholar 

  • Jian Z, Nakayama J, Noguchi E, Shibasaki M, Arinami T (2003) No evidence for association between the −112G/A polymorphism of UGRP1 and childhood atopic asthma. Clin Exp Allergy 33:902–904

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Teng W, Ben S, Xiong X, Zhang J, Xu S et al (2003) Genome-wide scan of Graves’ disease: evidence for linkage on chromosome 5q31 in Chinese Han pedigrees. J Clin Endocrinol Metab 88:1798–1803

    Article  PubMed  CAS  Google Scholar 

  • Kocjan T, Wraber B, Repnik U, Hojker S (2000) Changes in Th1/Th2 cytokine balance in Graves’ disease. Pflugers Arch 440:R94–R95

    Article  PubMed  CAS  Google Scholar 

  • Kraal G, van der Laan LJ, Elomaa O, Tryggvason K (2000) The macrophage receptor MARCO. Microbes Infect 2:313–316

    Article  PubMed  CAS  Google Scholar 

  • Kurotani R, Tomita T, Yang Q, Carlson BA, Chen C, Kimura S (2008) Role of secretoglobin 3A2 in lung development. Am J Respir Crit Care Med 178:389–398

    Article  PubMed  CAS  Google Scholar 

  • Lau SK, Luthringer DJ, Eisen RN (2002) Thyroid transcription factor-1: a review. Appl Immunohistochem Mol Morphol 10:97–102

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Ohmen JD, Li Z, Bentley LG, McElree C, Pressman S et al (1999) A genome-wide search identifies potential new susceptibility loci for Crohn’s disease. Inflamm Bowel Dis 5:271–278

    Article  PubMed  CAS  Google Scholar 

  • Menashe I, Rosenberg PS, Chen BE (2008) PGA: power calculator for case–control genetic association analyses. BMC Genet 9:36

    Article  PubMed  Google Scholar 

  • Menéndez-Hurtado A, Santos A, Pérez-Castillo A (2000) Characterization of the promoter region of the rat CCAAT/enhancer-binding protein alpha gene and regulation by thyroid hormone in rat immortalized brown adipocytes. Endocrinology 141:4164–4170

    Article  PubMed  Google Scholar 

  • Michelangeli VP, Poon CW, Arnus EE, Frauman AG, Conelly J, Colman PG (1995) Measurement of TSH receptor blocking immunoglobulins using 3H-adenine incorporation into FRTL-5 and JPOE9 cells: use in a child with neonatal hypothyroidism. Clin Endocrinol (Oxf) 42:39–44

    Google Scholar 

  • Moens HJ, Wiersinga WM, Drexhage HA (1984) Association between autoimmune thyroid disease, atopy, and urticaria? Lancet 2:582–583

    Article  PubMed  CAS  Google Scholar 

  • Nakkuntod J, Wongsurawat T, Charoenwongse P, Snabboon T, Sridama V, Hirankarn N (2004) No association between an interleukin 4 gene promoter (−589) polymorphism and Graves’ disease in Thai patients. J Med Assoc Thail 87:S123–S128

    Google Scholar 

  • Niimi T, Keck-Waggoner CL, Popescu NC, Zhou Y, Levitt RC, Kimura S (2001) UGRP1, a uteroglobin/Clara cell secretory protein-related protein, is a novel lung-enriched downstream target gene for the T/EBP/NKX2.1 homeodomain transcription factor. Mol Endocrinol 15:2021–2036

    Article  PubMed  CAS  Google Scholar 

  • Niimi T, Munakata M, Keck-Waggoner CL, Popescu NC, Levitt RC, Hisada M et al (2002) A polymorphism in the human UGRP1 gene promoter that regulates transcription is associated with an increased risk of asthma. Am J Hum Genet 70:718–725

    Article  PubMed  CAS  Google Scholar 

  • Noguchi E, Shibasaki M, Arinami T, Takeda K, Maki T, Miyamoto T et al (1997) Evidence for linkage between asthma/atopy in childhood and chromosome 5q31-q33 in a Japanese population. Am J Respir Crit Care Med 156:1390–1393

    PubMed  CAS  Google Scholar 

  • Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA et al (2007) Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet 39:830–832

    Article  PubMed  CAS  Google Scholar 

  • Pedotti R, De Voss JJ, Steinman L, Galli SJ (2003) Involvement of both ‘allergic’ and ‘autoimmune’ mechanisms in EAE, MS and other autoimmune diseases. Trends Immunol 24:479–484

    Article  PubMed  CAS  Google Scholar 

  • Rigoli L, Di Bella C, Procopio V, Finocchiaro G, Amorini M, Lo Giudice G et al (2007) Uteroglobin-related protein 1 gene −112G/a polymorphism and atopic asthma in Sicilian children. Allergy Asthma Proc 28:667–670

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Shirasawa S, Ishikawa N, Ito K, Tamai H, Kuma K et al (2001) Identification of susceptibility loci for autoimmune thyroid disease to 5q31-q33 and Hashimoto’s thyroiditis to 8q23-q24 by multipoint affected sib-pair linkage analysis in Japanese. Hum Mol Genet 10:1379–1386

    Article  PubMed  CAS  Google Scholar 

  • Shek LP, Tay AH, Chew FT, Goh DL, Lee BW (2001) Genetic susceptibility to asthma and atopy among Chinese in Singapore—linkage to markers on chromosome 5q31-33. Allergy 56:749–753

    Article  PubMed  CAS  Google Scholar 

  • Simmonds MJ, Yesmin K, Newby PR, Brand OJ, Franklyn JA, Gough SC (2010) Confirmation of association of chromosome 5q31-33 with United Kingdom Caucasian Graves’ disease. Thyroid 20:413–417

    Article  PubMed  CAS  Google Scholar 

  • Song HD, Liang J, Shi JY, Zhao SX, Liu Z, Zhao JJ et al (2009) Functional SNPs in the SCGB3A2 promoter are associated with susceptibility to Graves’ disease. Hum Mol Genet 18:1156–1170

    Article  PubMed  CAS  Google Scholar 

  • Srisodsai A, Kurotani R, Chiba Y, Sheikh F, Young HA, Donnelly RP et al (2004) Interleukin-10 induces uteroglobin-related protein (UGRP) 1 gene expression in lung epithelial cells through homeodomain transcription factor T/EBP/NKX2.1. J Biol Chem 279:54358–54368

    Article  PubMed  CAS  Google Scholar 

  • Takeoka K, Watanabe M, Matsuzuka F, Miyauchi A, Iwatani Y (2004) Increase of serum interleukin-10 in intractable Graves’ disease. Thyroid 14:201–205

    Article  PubMed  CAS  Google Scholar 

  • Tanda ML, Piantanida E, Lai A, Lombardi V, Dalle Mule I, Liparulo L et al (2009) Thyroid autoimmunity and environment. Horm Metab Res 41:436–442

    Article  PubMed  CAS  Google Scholar 

  • Thakur SA, Beamer CA, Migliaccio CT, Holian A (2009) Critical role of MARCO in crystalline silica-induced pulmonary inflammation. Toxicol Sci 108:462–471

    Article  PubMed  CAS  Google Scholar 

  • Tomita T, Kido T, Kurotani R, Iemura S, Sterneck E, Natsume T et al (2008) CAATT/enhancer-binding proteins alpha and delta interact with NKX2-1 to synergistically activate mouse secretoglobin 3A2 gene expression. J Biol Chem 283:25617–25627

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Lingling S, Ying J, Yushu L, Zhongyan S, Wei H et al (2005) Association study between the IL4, IL13, IRF1 and UGRP1 genes in chromosomal 5q31 region and Chinese Graves’ disease. J Hum Genet 50:574–582

    Article  PubMed  CAS  Google Scholar 

  • Yokouchi Y, Nukaga Y, Shibasaki M, Noguchi E, Kimura K, Ito S et al (2000) Significant evidence for linkage of mite-sensitive childhood asthma to chromosome 5q31-q33 near the interleukin 12 B locus by a genome-wide search in Japanese families. Genomics 66:152–160

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Liu N, Zhao Y, Jia H, Cui B, Ning G (2010) Association analysis of polymorphisms in IL-3, IL-4, IL-5, IL-9 and IL-13 with Graves’ disease. J Endocrinol Invest (in press). doi:10.3275/6937

    Google Scholar 

Download references

Acknowledgments

This work was funded by research grant 09-04-01420a from the Russian Foundation for Basic Research and supplementary grant S-0046 from the New Eurasia Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitry A. Chistiakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chistiakov, D.A., Voronova, N.V., Turakulov, R.I. et al. The −112G > A polymorphism of the secretoglobin 3A2 (SCGB3A2) gene encoding uteroglobin-related protein 1 (UGRP1) increases risk for the development of Graves’ disease in subsets of patients with elevated levels of immunoglobulin E. J Appl Genetics 52, 201–207 (2011). https://doi.org/10.1007/s13353-010-0022-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-010-0022-0

Keywords

Navigation