Skip to main content
Log in

Optical properties of cirrus transition zones over China detected by CALIOP

  • Special Collection on Meteorology and Environment over the Tibetan Plateau and Adjacent Regions
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

A transition zone near cirrus lateral boundaries can be detected by CALIOP (cloud–aerosol lidar with orthogonal polarization). In the present study, for such transition zones over China, a number of optical properties, such as the backscatter coefficient and depolarization ratio, showed transitional characteristics between cirrus and clear sky. The stepped horizontal profile showed sharp changes in particle number and morphology between cirrus clouds and clear sky. The color ratio, however, was unable to show cirrus transition features because of the low signal-to-noise ratio. Typical ice particles presented a color ratio of 0.55–1.25 and a depolarization ratio of greater than 0.12, which were significantly higher than those of clear sky. Therefore, optical properties in transition took the form of stepwise horizontal profiles. The proportion of typical-featured particles also demonstrated a stepped horizontal profile similar to the optical characteristics, but the relationship between the proportion and the optical characteristics was not uniform in the cirrus clouds, transition zone, and clear sky. Therefore, the optical changes in the transition zone were caused by not only the change in particle concentration, but also the change in the particles themselves. The probability density distribution of the transition-zone widths showed a positive skewness distribution, and transition zones with widths of 3–5 km occurred most frequently. Overall, transition-zone width decreased with increasing temperature and increased with increasing vertical and horizontal wind speeds. This trend demonstrated independence with the direction of the vertical and horizontal winds. These observations implied that the transitional features were caused by material exchange, such as entrainment and turbulent transport, near the cirrus lateral boundaries, and by the phase transformation of particles, such as sublimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alkezweeny, A. J., 1995: Field observations of in-cloud nucleation and the modification of atmospheric aerosol size distributions after cloud evaporation. J. Appl. Meteor., 34, 2649–2654, doi: 10.1175/1520-0450(1995)034<2649:FOOICN>2.0.CO;2.

    Article  Google Scholar 

  • Berry, E., and G. G. Mace, 2014: Cloud properties and radiative effects of the Asian summer monsoon derived from A-Train data. J. Geophys. Res. Atmos., 119, 9492–9508, doi: 10.1002/2014JD021458.

    Article  Google Scholar 

  • Borrmann, S., S. Solomon, J. E. Dye, et al., 1996: The potential of cirrus clouds for heterogeneous chlorine activation. Geophys. Res. Lett., 23, 2133–2136, doi: 10.1029/96GL01957.

    Article  Google Scholar 

  • Bowdle, D. A., J. Rothermel, J. M. Vaughan, et al., 1991: Aerosol backscatter measurements at 10.6 micrometers with airborne and ground-based CO2 Doppler lidars over the Colorado high plains: 2. Backscatter structure. J. Geophys. Res. Atmos. 96(D3), 5337–5344, doi: 10.1029/90JD02157.

    Article  Google Scholar 

  • Campbell, J. R., M. A. Vaughan, M. Oo, et al., 2015: Distinguishing cirrus cloud presence in autonomous lidar measurements. Atmos. Meas. Tech., 8, 435–449, doi: 10.5194/amt-8-435-2015.

    Article  Google Scholar 

  • Campbell, J. R., S. Lolli, J. R. Lewis, et al., 2016: Daytime cirrus cloud top-of-the-atmosphere radiative forcing properties at a midlatitude site and their global consequences. J. Appl. Meteor. Climatol., 55, 1667–1679, doi: 10.1175/JAMC-D-15-0217.1.

    Article  Google Scholar 

  • Clarke, A. D., J. L. Varner, F. Eisele, et al., 1998: Particle production in the remote marine atmosphere: Cloud outflow and subsidence during ACE 1. J. Geophys. Res. Atmos., 103(D13), 16397–16409, doi: 10.1029/97JD02987.

    Article  Google Scholar 

  • Comstock, J. M., T. P. Ackerman, and G. G. Mace, 2002: Groundbased lidar and radar remote sensing of tropical cirrus clouds at Nauru island: Cloud statistics and radiative impacts. J. Geophys. Res. Atmos., 107(D23), doi: 10.1029/2002JD002203.

    Google Scholar 

  • Flury, T., D. L. Wu, and W. G. Read, 2012: Correlation among cirrus ice content, water vapor and temperature in the TTL as observed by CALIPSO and Aura/MLS. Atmos. Chem. Phys., 12, 683–691, doi: 10.5194/acp-12-683-2012.

    Article  Google Scholar 

  • Haladay, T., and G. Stephens, 2009: Characteristics of tropical thin cirrus clouds deduced from joint CloudSat and CALIPSO observations. J. Geophys. Res. Atmos., 114(D8), doi: 10.1029/2008JD010675.

    Google Scholar 

  • Hegg, D. A., L. F. Radke, and P. V. Hobbs, 1990: Particle production associated with marine clouds. J. Geophys. Res. Atmos., 95(D9), 13917–13926, doi: 10.1029/JD095iD09p13917.

    Article  Google Scholar 

  • Hegg, D. A., D. S. Covert, H. Jonsson, et al., 2004: Observations of the impact of cloud processing on aerosol light-scattering efficiency. Tellus B, 56, 285–293, doi: 10.1111/j.1600-0889.2004.00099.x.

    Article  Google Scholar 

  • Hoppel, W. A., G. M. Frick, J. W. Fitzgerald, et al., 1994: Marine boundary layer measurements of new particle formation and the effects nonprecipitating clouds have on aerosol size distribution. J. Geophys. Res. Atmos., 99(D7), 14443–14459, doi: 10.1029/94JD00797.

    Article  Google Scholar 

  • Jiang, J. H., H. Su, S. Pawson, et al., 2010: Five year (2004–2009) observations of upper tropospheric water vapor and cloud ice from MLS and comparisons with GEOS-5 analyses. J. Geophys. Res., 115(D15), doi: 10.1029/2009JD013256.

    Google Scholar 

  • Kärcher, B., 2012: Supersaturation fluctuations in cirrus clouds driven by colored noise. J. Atmos. Sci., 69, 435–443, doi: 10.1175/JAS-D-11-0151.1.

    Article  Google Scholar 

  • Kim, S.-W., S. Berthier, J.-C. Ra, et al., 2008: Validation of aerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-based lidar in Seoul, Korea. Atmos. Chem. Phys., 8, 3705–3720, doi: 10.5194/acp-8-3705-2008.

    Article  Google Scholar 

  • Lelieveld, J., and J. Heintzenberg, 1992: Sulfate cooling effect on climate through in-cloud oxidation of anthropogenic SO2. Science, 258, 117–120, doi: 10.1126/science.258.5079.117.

    Article  Google Scholar 

  • Lelieveld, J., C. Brühl, P. Jöckel, et al., 2007: Stratospheric dryness: Model simulations and satellite observations. Atmos. Chem. Phys., 7, 1313–1332, doi: 10.5194/acp-7-1313-2007.

    Article  Google Scholar 

  • Li, R., H. K. Cai, Y. F. Fu, et al., 2014: The optical properties and longwave radiative forcing in the lateral boundary of cirrus cloud. Geophys. Res. Lett., 41, 3666–367, 5 doi: 10.1002/2014GL059432.

    Article  Google Scholar 

  • Liou, K.-N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114, 1167–1199, doi: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.

    Article  Google Scholar 

  • Liu, H. Y., D. J. Jacob, I. Bey, et al., 2001: Constraints from 210Pb and 7Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields. J. Geophys. Res. Atmos., 106(D11), 12109–12128, doi: 10.1029/2000JD900839.

    Article  Google Scholar 

  • Liu, J. J., B. Chen, and J. P. Huang, 2014: Discrimination and validation of clouds and dust aerosol layers over the Sahara desert with combined CALIOP and IIR measurements. J. Meteor. Res., 28, 185–198, doi: 10.1007/s13351-014-3051-5.

    Article  Google Scholar 

  • Liu, Y. Z., R. Jia, T. Dai, et al., 2014: A review of aerosol optical properties and radiative effects. J. Meteor. Res., 28, 1003–1028, doi: 10.1007/s13351-014-4045-z.

    Article  Google Scholar 

  • Liu, Z. Y., M. A. Vaughan, D. M. Winker, et al., 2004: Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data. J. Geophys. Res. Atmos., 109(D15), doi: 10.1029/2004JD004732.

    Google Scholar 

  • Liu, Z. Y., M. Vaughan, D. Winker, et al., 2009: The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of performance. J. Atmos. Oceanic Technol., 26, 1198–1213, doi: 10.1175/2009JTECHA1229.1.

    Article  Google Scholar 

  • Lu, M. L., J. Wang, A. Freedman, et al., 2003: Analysis of humidity halos around trade wind cumulus clouds. J. Atmos. Sci., 60, 1041–1059, doi: 10.1175/1520-0469(2003)60<1041:AOHHAT>2.0.CO;2.

    Article  Google Scholar 

  • Noel, V., H. Chepfer, G. Ledanois, et al., 2002: Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio. Appl. Opt., 41, 4245–4257, doi: 10.1364/AO.41.004245.

    Article  Google Scholar 

  • Redemann, J., Q. Zhang, P. B. Russell, et al., 2009: Case studies of aerosol remote sensing in the vicinity of clouds. J. Geophys. Res. Atmos., 114(D6), doi: 10.1029/2008JD010774.

    Google Scholar 

  • Saha, S., S. Moorthi, H.-L. Pan, et al., 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1057, doi: 10.1175/2010BAMS3001.1.

    Article  Google Scholar 

  • Sassen, K., and B. S. Cho, 1992: Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor., 31, 1275–1285, doi: 10.1175/1520-0450(1992)031<1275:STCLDF>2.0.CO;2.

    Article  Google Scholar 

  • Solomon, S., S. Borrmann, R. R. Garcia, et al., 1997: Heterogeneous chlorine chemistry in the tropopause region. J. Geophys. Res. Atmos., 102(D17), 21411–21429, doi: 10.1029/97JD01525.

    Article  Google Scholar 

  • Su, H., J. H. Jiang, X. H. Liu, et al., 2011: Observed increase of TTL temperature and water vapor in polluted clouds over Asia. J. Climate, 24, 2728–2736, doi: 10.1175/2010JCLI3749.1.

    Article  Google Scholar 

  • Su, W. Y., G. L. Schuster, N. G. Loeb, et al., 2008: Aerosol and cloud interaction observed from high spectral resolution lidar data. J. Geophys. Res. Atmos., 113(D24), doi: 10.1029/2008JD010588.

    Google Scholar 

  • Tackett, J. L., and L. Di Girolamo, 2009: Enhanced aerosol backscatter adjacent to tropical trade wind clouds revealed by satellite- based lidar. Geophys. Res. Lett., 36, doi: 10.1029/2009GL039264.

    Google Scholar 

  • Tao, Z. M., M. P. McCormick, D. Wu, et al., 2008: Measurements of cirrus cloud backscatter color ratio with a two-wavelength lidar. Appl. Opt., 47, 1478–1485, doi: 10.1364/AO.47.001478.

    Article  Google Scholar 

  • The NCAR Command Language (Version 6. 3. 0), 2016: Boulder, Colorado: UCAR/NCAR/CISL/VETS. [Available online at http://dx.doi.org/10.5065/D6WD3XH5].

    Google Scholar 

  • Twohy, C. H., J. A. Coakley Jr., and W. R. Tahnk, 2009: Effect of changes in relative humidity on aerosol scattering near clouds. J. Geophys. Res. Atmos., 114(D5), doi: 10.1029/2008JD010991.

    Google Scholar 

  • Varnai, T., and A. Marshak, 2011: Global CALIPSO observations of aerosol changes near clouds. IEEE Geosci. Remote Sens. Lett., 8, 19–23, doi: 10.1109/LGRS.2010.2049982.

    Article  Google Scholar 

  • Wang, P.-H., P. Minnis, M. P. McCormick, et al., 1996: A 6-year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990). J. Geophys. Res. Atmos., 101(D23), 29407–29429, doi: 10.1029/96JD01780.

    Article  Google Scholar 

  • Wang, Z. Z., R. L. Chi, B. Liu, et al., 2008: Depolarization properties of cirrus clouds from polarization lidar measurements over Hefei in spring. Chinese Opt. Lett., 6, 235–237, doi: 10.3788/COL20080604.0235.

    Article  Google Scholar 

  • Winker, D. M., J. R. Pelon, M. P. McCormick, et al., 2003: The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. SPIE 4893, Lidar Remote Sensing for Industry and Environment Monitoring III, Hangzhou, China, 24 March, SPIE, 1–11, doi: 10.1117/12.466539.

    Google Scholar 

  • Wu, D., Z. Wang, B. Wang, et al., 2011: CALIPSO validation using ground-based lidar in Hefei (31.9°N, 117.2°E), China. Appl. Phys. B, 102, 185–195, doi: 10.1007/s00340-010-4243-z.

    Article  Google Scholar 

Download references

Acknowledgments

All figures were created by using the NCAR Command Language (NCL) (2016). The CALIOP products were downloaded from the Atmospheric Science Data Center at NASA Langley Research Center of the United States.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongke Cai.

Additional information

Supported by the National Natural Science Foundation of China (41405031 and 41475037), China Meteorological Administration Special Public Welfare Research Fund (GYHY201506013), Sichuan Youth Fund (2014JQ0019), and Scientific Research Fund of Chengdu University of Information Technology (KYTZ201504 and J201519).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, H., Fu, Y., Chen, Q. et al. Optical properties of cirrus transition zones over China detected by CALIOP. J Meteorol Res 31, 576–585 (2017). https://doi.org/10.1007/s13351-017-6044-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-017-6044-3

Keywords

Navigation