Skip to main content
Log in

Orthonormal bases for anisotropic α-modulation spaces

  • Original Article
  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we show that n-term nonlinear approximation with the orthonormal bases in certain anisotropic α-modulation spaces can be completely characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Auscher, P., Weiss, G., Wickerhauser, M.V.: Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets. In: Wavelets, Wavelet Analysis and its Applications, vol. 2, pp. 237–256. Academic Press, Boston (1992)

  2. Borup L., Nielsen M.: Approximation with brushlet systems. J. Approx. Theory 123(1), 25–51 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Borup L., Nielsen M.: Banach frames for multivariate α-modulation spaces. J. Math. Anal. Appl. 321(2), 880–895 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borup L., Nielsen M.: Frame decomposition of decomposition spaces. J. Fourier Anal. Appl. 13(1), 39–70 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. DeVore R.A., Jawerth B., Lucier B.J.: Image compression through wavelet transform coding. IEEE Trans. Inform. Theory 38(2, part 2), 719–746 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. DeVore R.A., Jawerth B., Popov V.: Compression of wavelet decompositions. Am. J. Math. 114(4), 737–785 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Feichtinger H.G.: Banach spaces of distributions defined by decomposition methods. II. Math. Nachr. 132, 207–237 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Feichtinger H.G., Gröbner P.: Banach spaces of distributions defined by decomposition methods. I. Math. Nachr. 123, 97–120 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Garrigós G., Hernández E.: Sharp Jackson and Bernstein inequalities for N-term approximation in sequence spaces with applications. Indiana Univ. Math. J. 53(6), 1739–1762 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gribonval R., Nielsen M.: Nonlinear approximation with dictionaries. I. Direct estimates. J. Fourier Anal. Appl. 10(1), 51–71 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Grobner, P.: Banachraeume glatter Funktionen und Zerlegungsmethoden. ProQuest LLC, Ann Arbor, Thesis (Dr. Natw.)–Technische Universitaet Wien (Austria) 1992

  12. Hernández, E., Weiss, G.: A first course on wavelets. Studies in Advanced Mathematics. CRC Press, Boca Raton (With a foreword by Yves Meyer) (1996)

  13. Kalton, N.: Quasi-Banach spaces. In: Handbook of the geometry of Banach spaces, vol. 2, pp. 1099–1130. North-Holland, Amsterdam (2003)

  14. Kalton, N.J., Peck, N.T., Roberts, J.W.: An F-space sampler. In: London Mathematical Society Lecture Note Series, vol. 89. Cambridge University Press, Cambridge (1984)

  15. Kyriazis G., Petrushev P.: New bases for Triebel-Lizorkin and Besov spaces. Trans. Am. Math. Soc. 354(2), 749–776 (2002) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  16. Laeng E.: Une base orthonormale de L 2(R) dont les éléments sont bien localisés dans l’espace de phase et leurs supports adaptés à toute partition symétrique de l’espace des fréquences. C. R. Acad. Sci. Paris Sér. I Math. 311(11), 677–680 (1990)

    MATH  MathSciNet  Google Scholar 

  17. Meyer F.G., Coifman R.R.: Brushlets: a tool for directional image analysis and image compression. Appl. Comput. Harmon. Anal. 4(2), 147–187 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Meyer, Y.: Wavelets and operators. In: Cambridge Studies in Advanced Mathematics, vol. 37. Cambridge University Press, Cambridge (1992)

  19. Nielsen M.: Orthonormal bases for α-modulationspaces. Collect. Math. 61(2), 173–190 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rasmussen, K.N., Nielsen, M.: Compactly supported frames for decomposition spaces. J. Fourier Anal. Appl. (2011, in press)

  21. Triebel, H.: Theory of function spaces. In: Monographs in Mathematics, vol. 78. Birkhäuser, Basel (1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth N. Rasmussen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasmussen, K.N. Orthonormal bases for anisotropic α-modulation spaces. Collect. Math. 63, 109–121 (2012). https://doi.org/10.1007/s13348-011-0052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-011-0052-x

Keywords

Mathematics Subject Classification (2000)

Navigation