Skip to main content

Advertisement

Log in

Exogenous modification of EL-4 T cell extracellular vesicles with miR-155 induce macrophage into M1-type polarization

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) show promising potential to be used as therapeutics, disease biomarkers, and drug delivery vehicles. We aimed to modify EVs with miR-155 to modulate macrophage immune response that can be potentially used against infectious diseases. Primarily, we characterized T cells (EL-4) EVs by several standardized techniques and confirmed that the EVs could be used for experimental approaches. The bioactivities of the isolated EVs were confirmed by the uptake assessment, and the results showed that target cells can successfully uptake EVs. To standardize the loading protocol by electroporation for effective biological functionality, we chose fluorescently labelled miR-155 mimics because of its important roles in the immune regulations to upload them into EVs. The loading procedure showed that the dosage of 1 µg of miRNA mimics can be efficiently loaded to the EVs at 100 V, further confirmed by flow cytometry. The functional assay by incubating these modified EVs (mEVs) with in vitro cultured cells led to an increased abundance of miR-155 and decreased the expressions of its target genes such as TSHZ3, Jarid2, ZFP652, and WWC1. Further evaluation indicated that these mEVs induced M1-type macrophage polarization with increased TNF-α, IL-6, IL-1β, and iNOS expression. The bioavailability analysis revealed that mEVs could be detected in tissues of the livers. Overall, our study demonstrated that EVs can be engineered with miR-155 of interest to modulate the immune response that may have implications against infectious diseases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Morelli AE, et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood. 2004;104(10):3257–66.

    Article  CAS  PubMed  Google Scholar 

  2. Villarroya-Beltri C, et al. Sorting it out: regulation of exosome loading. Semin Cancer Biol. 2014;28:-13.

  3. Fader CM, et al. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim Biophys Acta Mol Cell Res. 2009;1793(12):1901–16.

    Article  CAS  Google Scholar 

  4. Rodrigues M, et al. Role of extracellular vesicles in viral and bacterial infections: pathogenesis, diagnostics, and therapeutics. Theranostics. 2018;8(10):2709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. El-Andaloussi S, et al. Exosome-mediated delivery of siRNA in vitro and in vivo. Nat Protoc. 2012;7(12):2112–26.

    Article  CAS  PubMed  Google Scholar 

  6. Kamerkar S, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546(7659):498–503.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Montecalvo A, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119(3):756–66.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Abreu RC, et al. Exogenous loading of miRNAs into small extracellular vesicles. J Extracell Vesicles. 2021;10(10):e12111.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alvarez-Erviti L, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–5.

    Article  CAS  PubMed  Google Scholar 

  10. Kim MS, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine. 2016;12(3):655–64.

    Article  CAS  PubMed  Google Scholar 

  11. Sato YT, et al. Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep. 2016;6:21933.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Bartel DP. Metazoan microRNAs. Cell. 2018;173(1):20–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ranganath P. MicroRNA-155 and its role in malignant hematopoiesis. Biomark Insights. 2015;10:95–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cardoso AL, et al. miR-155 modulates microglia-mediated immune response by down-regulating SOCS-1 and promoting cytokine and nitric oxide production. Immunology. 2012;135(1):73–88.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  15. Giri BR, Mahato RI, Cheng G. Roles of microRNAs in T cell immunity: implications for strategy development against infectious diseases. Med Res Rev. 2019;39(2):706–32.

    Article  PubMed  Google Scholar 

  16. Zhang ZT, et al. Dexmedetomidine alleviates acute lung injury by promoting Tregs differentiation via activation of AMPK/SIRT1 pathway. Inflammopharmacology. 2023;31(1):423–38.

    Article  PubMed  Google Scholar 

  17. Li S, et al. Characterization of microRNA cargo of extracellular vesicles isolated from the plasma of Schistosoma japonicum-infected mice. Front Cell Infect Microbiol. 2022;12: 803242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deng Z, et al. Ultrasound-mediated augmented exosome release from astrocytes alleviates amyloid-β-induced neurotoxicity. Theranostics. 2021;11(9):4351–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  20. Watanabe S, et al. The role of macrophages in the resolution of inflammation. J Clin Invest. 2019;129(7):2619–28.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vannella KM, Wynn TA. Mechanisms of organ injury and repair by macrophages. Annu Rev Physiol. 2017;79:593–617.

    Article  CAS  PubMed  Google Scholar 

  22. Villarroya-Beltri C, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4:2980.

    Article  PubMed  ADS  Google Scholar 

  23. Torralba D, et al. Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat Commun. 2018;9(1):2658.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  24. Wahlgren J, et al. Activated human T cells secrete exosomes that participate in IL-2 mediated immune response signaling. PLoS ONE. 2012;7(11):e49723.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Mittelbrunn M, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011;2(1):282.

    Article  PubMed  ADS  Google Scholar 

  26. Cai Z, et al. Activated T cell exosomes promote tumor invasion via Fas signaling pathway. J Immunol. 2012;188(12):5954–61.

    Article  CAS  PubMed  Google Scholar 

  27. Witwer KW, Wolfram J. Extracellular vesicles versus synthetic nanoparticles for drug delivery. Nat Rev Mater. 2021;6(2):103–6.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Ohno S, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther. 2013;21(1):185–91.

    Article  CAS  PubMed  Google Scholar 

  29. Czernek L, Pęczek Ł, Düchler M. Small extracellular vesicles loaded with immunosuppressive mirnas leads to an inhibition of dendritic cell maturation. Arch Immunol Ther Exp. 2022;70(1):27.

    Article  CAS  Google Scholar 

  30. Buzas EI. The roles of extracellular vesicles in the immune system. Nat Rev Immunol. 2023;23(4):236–50.

    Article  CAS  PubMed  Google Scholar 

  31. Meizlish ML, et al. Tissue homeostasis and inflammation. Annu Rev Immunol. 2021;39:557–81.

    Article  CAS  PubMed  Google Scholar 

  32. Kurowska-Stolarska M, et al. MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc Natl Acad Sci USA. 2011;108(27):11193–8.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Jing W, et al. CRISPR/CAS9-mediated genome editing of miRNA-155 inhibits proinflammatory cytokine production by RAW264. 7 cells. BioMed Res Int. 2015:326042.

  34. Kim H. The transcription factor MafB promotes anti-inflammatory M2 polarization and cholesterol efflux in macrophages. Sci Rep. 2017;7(1):7591.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  35. He M, et al. MicroRNA-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting C/EBPβ. Cell Mol Immunol. 2009;6(5):343–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martinez-Nunez RT, Louafi F, Sanchez-Elsner T. The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor α1 (IL13Rα1). J Biol Chem. 2011;286(3):1786–94.

    Article  CAS  PubMed  Google Scholar 

  37. Louafi F, Martinez-Nunez RT, Sanchez-Elsner T. MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-β. J Biol Chem. 2010;285(53):41328–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Salvi V, et al. Cytokine targeting by miRNAs in autoimmune diseases. Front Immunol. 2019;10:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Escobar TM, et al. miR-155 activates cytokine gene expression in Th17 cells by regulating the DNA-binding protein Jarid2 to relieve polycomb-mediated repression. Immunity. 2014;40(6):865–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Caballero-Garrido E, et al. In vivo inhibition of miR-155 promotes recovery after experimental mouse stroke. J Neurosci. 2015;35(36):12446–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang L, Cao QM. Long non-coding RNA XIST alleviates sepsis-induced acute kidney injury through inhibiting inflammation and cell apoptosis via regulating miR-155-5p/WWC1 axis. Kaohsiung J Med Sci. 2022;38(1):6–17.

    Article  CAS  PubMed  Google Scholar 

  42. Usman WM, et al. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat Commun. 2018;9(1):2359.

    Article  MathSciNet  PubMed  PubMed Central  ADS  Google Scholar 

  43. Zhang G, et al. Extracellular vesicles: natural liver-accumulating drug delivery vehicles for the treatment of liver diseases. J Extracell Vesicles. 2020;10(2):e12030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Cheng lab members for constructive suggestion on the discussion.

Funding

This work was supported, in whole or in part, by the Key Program for International S&T Cooperation Projects of China (2021YFE0191600 to GC) and the National Natural Science Foundation of China (31950410564 to BG, 31672550 to GC).

Author information

Authors and Affiliations

Authors

Contributions

Bikash R. Giri: conceptualization, investigation, analysis, writing, funding acquisition; Li Shun: investigation, analysis; Cheng Guofeng: conceptualization, supervision, methodology, editing, funding acquisition.

Corresponding author

Correspondence to Guofeng Cheng.

Ethics declarations

Ethics approval and consent to participate

Animal experiments were performed in compliance with the institutional guidelines and by following the protocol approved by the Institutional Care and Use Committee of Tongji University School of Medicine, China (TJAA00621101).

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1040 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, B.R., Li, S. & Cheng, G. Exogenous modification of EL-4 T cell extracellular vesicles with miR-155 induce macrophage into M1-type polarization. Drug Deliv. and Transl. Res. 14, 934–944 (2024). https://doi.org/10.1007/s13346-023-01442-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01442-4

Keywords

Navigation