Skip to main content
Log in

Hyaluronic acid-antigens conjugates trigger potent immune response in both prophylactic and therapeutic immunization in a melanoma model

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Immunotherapy of advanced melanoma has encountered significant hurdles in terms of clinical efficacy. Here, we designed a clinically translatable hyaluronic acid (HA)-based vaccine delivering a combination of major histocompatibility complex (MHC) class I- and class II-restricted melanoma antigens (TRP2 and Gp100, respectively) conjugated to HA. HA-nanovaccine (HA-TRP2-Gp100 conjugate) exhibited tropism in the lymph nodes and promoted stimulation of the immune response (2.3-fold higher than the HA+TRP2+Gp100). HA-nanovaccine significantly delayed the growth of B16F10 melanoma and extended survival in both the prophylactic and therapeutic settings (median survival of 22 and 27, respectively, vs 17 days of the untreated group). Moreover, mice prophylactically treated with the HA-nanovaccine displayed significantly higher CD8+ and CD4+ T-cell/Treg ratios in both the spleen and tumor at day 16, suggesting that the HA-nanovaccine overcame the immunosuppressive tumor microenvironment. Superior infiltration of active CD4+ and CD8+ T cells was observed at the endpoint. This study supports the conclusion that HA potentiates the effect of a combination of MHC I and MHC II antigens via a potent immune response against melanoma.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The data generated during the current study are available from the corresponding author on reasonable request.

References

  1. Huang AC, Zappasodi R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance. Nat Immunol. 2022;23:660–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Switzer B, Puzanov I, Skitzki JJ, Hamad L, Ernstoff MS. Managing metastatic melanoma in,. a clinical review. JCO Oncol Pract. 2022;18(2022):335–51.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Papaioannou NE, Beniata OV, Vitsos P, Tsitsilonis O, Samara P. Harnessing the immune system to improve cancer therapy. Ann Transl Med. 2016;4.

  4. Dane EL, Belessiotis-Richards A, Backlund C, Wang J, Hidaka K, Milling LE, Bhagchandani S, Melo MB, Wu S, Li N. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. Nat Mater. 2022;21:710–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen X, Zhang Y, Fu Y. The critical role of toll-like receptor-mediated signaling in cancer immunotherapy. Med Drug Discov. 2022;100122.

  6. Martins F, Sofiya L, Sykiotis GP, Lamine F, Maillard M, Fraga M, Shabafrouz K, Ribi C, Cairoli A, Guex-Crosier Y. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance, Nature reviews. Clin Oncol. 2019;16:563–80.

    CAS  Google Scholar 

  7. Morgado M, Plácido A, Morgado S, Roque F. Management of the adverse effects of immune checkpoint inhibitors. Vaccines. 2020;8:575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schoenfeld AJ, Hellmann MD. Acquired resistance to immune checkpoint inhibitors. Cancer Cell. 2020;37:443–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood J Am Soc Hematol. 2018;131:58–67.

    CAS  Google Scholar 

  10. Xu-Monette ZY, Zhang M, Li J, Young KH. PD-1/PD-L1 blockade: have we found the key to unleash the antitumor immune response? Front Immunol. 2017;8:1597.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rausch MP, Hastings KT. Immune checkpoint inhibitors in the treatment of melanoma: from basic science to clinical application. Exon Publications. 2017;121–142.

  12. Wróbel S, Przybyło M, Stępień E. The clinical trial landscape for melanoma therapies. J Clin Med. 2019;8:368.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol. 2022;15:1–26.

    Article  Google Scholar 

  14. Pedersen SR, Sørensen MR, Buus S, Christensen JP, Thomsen AR. Comparison of vaccine-induced effector CD8 T cell responses directed against self-and non–self-tumor antigens: implications for cancer immunotherapy. J Immunol. 2013;191:3955–67.

    Article  CAS  PubMed  Google Scholar 

  15. Coulie PG, Van den Eynde BJ, Van Der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014;14:135–46.

    Article  CAS  PubMed  Google Scholar 

  16. Janelle V, Rulleau C, Del Testa S, Carli C, Delisle J-S. T-cell immunotherapies targeting histocompatibility and tumor antigens in hematological malignancies. Front Immunol. 2020;11:276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pao S-C, Chu M-T, Hung S-I. Therapeutic vaccines targeting neoantigens to induce T-cell immunity against cancers. Pharmaceutics. 2022;14:867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.

    Article  CAS  PubMed  Google Scholar 

  19. Lopes A, Vandermeulen G, Préat V. Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res. 2019;38:1–24.

    Article  Google Scholar 

  20. Slingluff CL Jr, Petroni GR, Yamshchikov GV, Hibbitts S, Grosh WW, Chianese-Bullock KA, Bissonette EA, Barnd DL, Deacon DH, Patterson JW. Immunologic and clinical outcomes of vaccination with a multiepitope melanoma peptide vaccine plus low-dose interleukin-2 administered either concurrently or on a delayed schedule. J Clin Oncol. 2004;22:4474–85.

    Article  CAS  PubMed  Google Scholar 

  21. Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity. 2010;33:492–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schijns VE, Lavelle EC. Trends in vaccine adjuvants. Expert Rev Vaccines. 2011;10:539–50.

    Article  CAS  PubMed  Google Scholar 

  23. Reddy ST, Van Der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O’Neil CP, Lee LK, Swartz MA, Hubbell JA. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol. 2007;25:1159–64.

    Article  CAS  PubMed  Google Scholar 

  24. Buonaguro L, Petrizzo A, Tornesello ML, Buonaguro FM. Translating tumor antigens into cancer vaccines. Clin Vaccine Immunol. 2011;18:23–34.

    Article  CAS  PubMed  Google Scholar 

  25. Xing Y, Hogquist KA. T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol. 2012;4:a006957.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Melief CJ, Van Der Burg SH. Immunotherapy of established (pre) malignant disease by synthetic long peptide vaccines. Nat Rev Cancer. 2008;8:351–60.

    Article  CAS  PubMed  Google Scholar 

  27. Weber J. Peptide vaccines for cancer. Cancer Invest. 2002;20:208–21.

    Article  CAS  PubMed  Google Scholar 

  28. Silva JM, Zupancic E, Vandermeulen G, Oliveira VG, Salgado A, Videira M, Gaspar M, Graca L, Préat V, Florindo HF. In vivo delivery of peptides and Toll-like receptor ligands by mannose-functionalized polymeric nanoparticles induces prophylactic and therapeutic anti-tumor immune responses in a melanoma model. J Control Release. 2015;198:91–103.

    Article  CAS  PubMed  Google Scholar 

  29. Conniot J, Scomparin A, Peres C, Yeini E, Pozzi S, Matos AI, Kleiner R, Moura LI, Zupančič E, Viana AS. Immunization with mannosylated nanovaccines and inhibition of the immune-suppressing microenvironment sensitizes melanoma to immune checkpoint modulators. Nat Nanotechnol. 2019;14:891–901.

    Article  CAS  PubMed  Google Scholar 

  30. Smith R, Wafa EI, Geary SM, Ebeid K, Alhaj-Suliman SO, Salem AK. Cationic nanoparticles enhance T cell tumor infiltration and antitumor immune responses to a melanoma vaccine. Sci Adv 2022;8:eabk3150.

  31. Gao J, Ochyl LJ, Yang E, Moon JJ. Cationic liposomes promote antigen cross-presentation in dendritic cells by alkalizing the lysosomal pH and limiting the degradation of antigens. Int J Nanomed. 2017;12:1251.

    Article  CAS  Google Scholar 

  32. Belizaire R, Unanue ER. Targeting proteins to distinct subcellular compartments reveals unique requirements for MHC class I and II presentation. Proc Natl Acad Sci. 2009;106:17463–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ren H, Li J, Liu G, Sun Y, Yang X, Jiang Z, Zhang J, Lovell JF, Zhang Y. Anticancer vaccination with immunogenic micelles that capture and release pristine CD8+ T-cell epitopes and adjuvants. ACS Appl Mater Interfaces. 2022;14:2510–21.

    Article  CAS  PubMed  Google Scholar 

  34. Hong X, Zhong X, Du G, Hou Y, Zhang Y, Zhang Z, Gong T, Zhang L, Sun X. The pore size of mesoporous silica nanoparticles regulates their antigen delivery efficiency. Sci Adv. 2020;6:eaaz4462.

  35. Zhu M, Ding X, Zhao R, Liu X, Shen H, Cai C, Ferrari M, Wang HY, Wang R-F. Co-delivery of tumor antigen and dual toll-like receptor ligands into dendritic cell by silicon microparticle enables efficient immunotherapy against melanoma. J Control Release. 2018;272:72–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu K, Wen Y, Zhang X, Liu Y, Qiu D, Li B, Zheng L, Wu Y, Xing M, Li J. Injectable host-guest gel nanovaccine for cancer immunotherapy against melanoma. Mater Today Adv. 2022;15:100236.

    Article  CAS  Google Scholar 

  37. Kuai R, Sun X, Yuan W, Xu Y, Schwendeman A, Moon JJ. Subcutaneous nanodisc vaccination with neoantigens for combination cancer immunotherapy. Bioconjug Chem. 2018;29:771–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ashford MB, England RM, Akhtar N. Highway to success—developing advanced polymer therapeutics. Adv Ther. 2021;4:2000285.

    Article  CAS  Google Scholar 

  39. Almalik A, Karimi S, Ouasti S, Donno R, Wandrey C, Day PJ, Tirelli N. Hyaluronic acid (HA) presentation as a tool to modulate and control the receptor-mediated uptake of HA-coated nanoparticles. Biomaterials. 2013;34:5369–80.

    Article  CAS  PubMed  Google Scholar 

  40. Malfanti A, Catania G, Degros Q, Wang M, Bausart M, Préat V. Design of bio-responsive hyaluronic acid–doxorubicin conjugates for the local treatment of glioblastoma. Pharmaceutics. 2022;14:124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Singh B, Maharjan S, Pan DC, Zhao Z, Gao Y, Zhang YS, Mitragotri S. Imiquimod-gemcitabine nanoparticles harness immune cells to suppress breast cancer. Biomaterials. 2022;280: 121302.

    Article  CAS  PubMed  Google Scholar 

  42. Sallam MA, Prakash S, Krishnan V, Todorova K, Mandinova A, Mitragotri S. Hyaluronic acid conjugates of Vorinostat and Bexarotene for treatment of cutaneous malignancies. Adv Ther. 2020;3:2000116.

    Article  CAS  Google Scholar 

  43. Mummert ME. Immunologic roles of hyaluronan. Immunol Res. 2005;31:189–205.

    Article  CAS  PubMed  Google Scholar 

  44. Chandran SS, Verhoeven D, Teijaro JR, Fenton MJ, Farber DL. TLR2 engagement on dendritic cells promotes high frequency effector and memory CD4 T cell responses. J Immunol. 2009;183:7832–41.

    Article  CAS  PubMed  Google Scholar 

  45. Lee-Sayer SS, Dong Y, Arif AA, Olsson M, Brown KL, Johnson P. The where, when, how, and why of hyaluronan binding by immune cells. Front Immunol. 2015;6:150.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Banerji S, Ni J, Wang S-X, Clasper S, Su J, Tammi R, Jones M, Jackson DG. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol. 1999;144:789–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fraser J, Kimpton WG, Laurent T, Cahill RN, Vakakis N. Uptake and degradation of hyaluronan in lymphatic tissue. Biochem J. 1988;256:153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Salari N, Mansouri K, Valipour E, Abam F, Jaymand M, Rasoulpoor S, Dokaneheifard S, Mohammadi M. Hyaluronic acid-based drug nanocarriers as a novel drug delivery system for cancer chemotherapy: a systematic review. DARU J Pharm Sci. 2021;29:439–47.

    Article  CAS  Google Scholar 

  49. Dalla Pietà A, Carpanese D, Grigoletto A, Tosi A, Dalla Santa S, Pedersen GK, Christensen D, Meléndez-Alafort L, Barbieri V, De Benedictis P. Hyaluronan is a natural and effective immunological adjuvant for protein-based vaccines. Cell Mol Immunol. 2021;18:1197–210.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lopes A, Bastiancich C, Bausart M, Ligot S, Lambricht L, Vanvarenberg K, Ucakar B, Gallez B, Préat V, Vandermeulen G. New generation of DNA-based immunotherapy induces a potent immune response and increases the survival in different tumor models. J Immunother Cancer. 2021;9.

  51. Yu JW, Bhattacharya S, Yanamandra N, Kilian D, Shi H, Yadavilli S, Katlinskaya Y, Kaczynski H, Conner M, Benson W. Tumor-immune profiling of murine syngeneic tumor models as a framework to guide mechanistic studies and predict therapy response in distinct tumor microenvironments. PLoS One. 2018;13:e0206223.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Phua KK, Staats HF, Leong KW, Nair SK. Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Sci Rep. 2014;4:1–7.

    Article  Google Scholar 

  53. Van Lysebetten D, Malfanti A, Deswarte K, Koynov K, Golba B, Ye T, Zhong Z, Kasmi S, Lamoot A, Chen Y. Lipid-polyglutamate nanoparticle vaccine platform. ACS Appl Mater Interfaces. 2021;13:6011–22.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lepland A, Malfanti A, Haljasorg U, Asciutto EK, Pickholz M, Bringas M, Đorđević S, Salumäe L, Peterson P, Teesalu T. Depletion of mannose receptor–positive tumor-associated macrophages via a peptide-targeted star-shaped polyglutamate inhibits breast cancer progression in mice.  Cancer Res Commun. 2022;2:533–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Falcone S, Cocucci E, Podini P, Kirchhausen T, Clementi E, Meldolesi J. Macropinocytosis: regulated coordination of endocytic and exocytic membrane traffic events. J Cell Sci. 2006;119:4758–69.

    Article  CAS  PubMed  Google Scholar 

  56. Bhattacharya DS, Svechkarev D, Souchek J, Hill TK, Taylor M, Natarajan A, Mohs AM. Impact of structurally modifying hyaluronic acid on CD44 interaction. J Mater Chem B. 2017;5:8183–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ols S, Yang L, Thompson EA, Pushparaj P, Tran K, Liang F, Lin A, Eriksson B, Hedestam GBK, Wyatt RT. Route of vaccine administration alters antigen trafficking but not innate or adaptive immunity. Cell Rep. 2020;30:3964–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Klinman DM, Kamstrup S, Verthelyi D, Gursel I, Ishii KJ, Takeshita F, Gursel M. Activation of the innate immune system by CpG oligodeoxynucleotides: immunoprotective activity and safety. Springer seminars in immunopathology 2000;173–183. Springer.

  59. Catania G, Rodella G, Vanvarenberg K, Préat V, Malfanti A. Combination of hyaluronic acid conjugates with immunogenic cell death inducer and CpG for glioblastoma local chemo-immunotherapy elicits an immune response and induces long-term survival. Biomater. 2023;122006.

  60. Kirkin AF, Dzhandzhugazyan K, Zeuthen J. Melanoma-associated antigens recognized by cytotoxic T lymphocytes. APMIS. 1998;106:665–79.

    Article  CAS  PubMed  Google Scholar 

  61. Vreeland TJ, Clifton GT, Hale DF, Chick RC, Hickerson AT, Cindass JL, Adams AM, Bohan PMK, Andtbacka RH, Berger AC. A phase IIb randomized controlled trial of the TLPLDC vaccine as adjuvant therapy after surgical resection of stage III/IV melanoma: a primary analysis. Ann Surg Oncol. 2021;28:6126–37.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Azharuddin M, Zhu GH, Sengupta A, Hinkula J, Slater NK, Patra HK. Nano toolbox in immune modulation and nanovaccines. Trends Biotechnol. 2022.

  63. Kaminskas LM, Kota J, McLeod VM, Kelly BD, Karellas P, Porter CJ. PEGylation of polylysine dendrimers improves absorption and lymphatic targeting following SC administration in rats. J Control Release. 2009;140:108–16.

    Article  CAS  PubMed  Google Scholar 

  64. An M, Li M, Xi J, Liu H. Silica nanoparticle as a lymph node targeting platform for vaccine delivery. ACS Appl Mater Interfaces. 2017;9:23466–75.

    Article  CAS  PubMed  Google Scholar 

  65. Yoo E, Salyer AC, Brush MJ, Li Y, Trautman KL, Shukla NM, De Beuckelaer A, Lienenklaus S, Deswarte K, Lambrecht BN. Hyaluronic acid conjugates of TLR7/8 agonists for targeted delivery to secondary lymphoid tissue. Bioconjug Chem. 2018;29:2741–54.

    Article  CAS  PubMed  Google Scholar 

  66. Laurent T, Fraser J, Pertoft H, Smedsrød B. Binding of hyaluronate and chondroitin sulphate to liver endothelial cells. Biochem J. 1986;234:653–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Courel M-N, Maingonnat C, Bertrand P, Chauzy C, Smadja-Joffe F, Delpech B. Biodistribution of injected tritiated hyaluronic acid in mice: a comparison between macromolecules and hyaluronic acid-derived oligosaccharides. In Vivo. 2004;18:181–8.

    CAS  PubMed  Google Scholar 

  68. Seliger B, Ruiz-Cabello F, Garrido F. IFN inducibility of major histocompatibility antigens in tumors. Adv Cancer Res. 2008;101:249–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo targeting of dendritic cells in lymph nodes with poly (propylene sulfide) nanoparticles. J Control Release. 2006;112:26–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Nicolas Dauguet for the support of flow cytometry analysis. We also thank Valentina Marotti for her help in design figures with biorender.com.

Funding

A.M. is supported by the Marie Skłodowska-Curie Actions for an Individual European Fellowship under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 887609) and by an FRS-FNRS fellowship (grant agreement no. 40000747) (Belgium). M.B. is supported by a Televie grant. V.P. is supported by Fonds de la Recherche Scientifique—Fonds National de la Recherche Scientifique (FRS-FNRS, grant agreement nos. 33669945, 40003419).

Author information

Authors and Affiliations

Authors

Contributions

A.M. and V.P. designed the research plan and the experiments, conceived the project, and obtained financial support. A.M. M.B. K.V. and B.U. performed the experiments. A.M. analyzed the data. A.M. and V.P. wrote the paper with revisions from all authors.

Corresponding authors

Correspondence to Alessio Malfanti or Véronique Préat.

Ethics declarations

Ethics approval

The animal experiments were conducted as per the guidelines of the Belgian national regulation guidelines, in agreement with EU Directive 1010/63/EU concerning the use of animals for experimental purposes. The study protocols were approved by the ethical committee for animal care of the health science sector of the Université Catholique de Louvain (2019/UCL/MD/004, 2021/UCL/MD/052).

Consent to participate

Not applicable. Human subjects were not used in this study.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 574 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malfanti, A., Bausart, M., Vanvarenberg, K. et al. Hyaluronic acid-antigens conjugates trigger potent immune response in both prophylactic and therapeutic immunization in a melanoma model. Drug Deliv. and Transl. Res. 13, 2550–2567 (2023). https://doi.org/10.1007/s13346-023-01337-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01337-4

Keywords

Navigation