Skip to main content

Advertisement

Log in

Development and pharmacokinetic evaluation of osmotically controlled drug delivery system of Valganciclovir HCl for potential application in the treatment of CMV retinitis

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Valganciclovir HCl (VGH) is the widely used drug for the treatment of cytomegalovirus (CMV) retinitis infection with an induction dose of 900 mg per oral (p.o.) twice a day and a maintenance dose of 900 mg (p.o.). This required dose of the drug also leads to multiple side effects due to repeated administration. The research was highlighted to develop, formulate, optimize, and evaluate single-core osmotic pump (SCOP) tablet of VGH with the dose of 450 mg to reduce dosing frequency and associated side effects. The decrease in dose also minimizes the hepatic and nephrotic load. The optimized batch of the formulation was subjected to comparative in vitro and in vivo evaluation. The tablet core composition is the primary influencer of the drug delivery fraction in a zero order, whereas the membrane characteristics control the drug release rate. In vivo pharmacokinetic studies revealed that the newly developed osmotic formulation has controlled zero-order release for 24 h with a single dose of 450 mg while the marketed formulation requires twice administration within 24 h to maintain the plasma concentration in the therapeutic window. The pharmacokinetic study demonstrated that the developed formulation has the area under curve (AUC) of 58.415 µg h/ml with single dose while the marketed formulation shows the AUC of about 37.903 µg h/ml and 31.983 µg h/ml for first and second dose, respectively. The large AUC demonstrates the extended release of drug with a single dose and effective plasma concentration. Hence, the developed formulation can be a promising option for the treatment of CMV retinitis with the minimum dose and dosing frequency.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

The data or analysis during the current study will be made available on request by the corresponding author.

References

  1. Tan BH. Cytomegalovirus treatment. Curr Treat Options Infect Dis. 2014;6(3):256–70. https://doi.org/10.1007/s40506-014-0021-5.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tseng A, Foisy M. The role of ganciclovir for the management of cytomegalovirus retinitis in HIV patients: pharmacological review and update on new developments. Can J Infect Dis. 1996;7(3):183–94. https://doi.org/10.1155/1996/780831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cvetković RS, Wellington K. Valganciclovir: a review of its use in the management of CMV infection and disease in immunocompromised patients. Drugs. 2005;65(6):859–78. https://doi.org/10.2165/00003495-200565060-00012.

    Article  PubMed  Google Scholar 

  4. Vaziri S, Pezhman Z, Sayyad B, Mansouri F, Janbakhsh A, Afsharian M, N. F. Efficacy of valganciclovir and ganciclovir for cytomegalovirus disease in solid organ transplants: ameta-analysis. J Res Med Sci. 2014;19(12):1185–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ahmed JA. A review on immediate release tablet dosage form. Int J Pharm Pharm Res. 2015;2(23):1–17.

    CAS  Google Scholar 

  6. Bhusal P, Harrison J, Sharma M, Jones DS, Hill AG, Svirskis D. Controlled release drug delivery systems to improve post-operative pharmacotherapy. Drug Deliv Transl Res. 2016;6(5):441–51. https://doi.org/10.1007/s13346-016-0305-z.

    Article  CAS  PubMed  Google Scholar 

  7. Teoh SC, Ou X, Lim TH. Intravitreal ganciclovir maintenance injection for cytomegalovirus retinitis: efficacy of a low-volume, intermediate-dose regimen. Ophthalmology. 2012;119(3):588–95. https://doi.org/10.1016/j.ophtha.2011.09.004.

    Article  PubMed  Google Scholar 

  8. Jana P, Shyam M, Singh S, Jayaprakash V, Dev A. Biodegradable polymers in drug delivery and oral vaccination. Eur Polymer J. 2021;142: 110155. https://doi.org/10.1016/j.eurpolymj.2020.110155.

    Article  CAS  Google Scholar 

  9. Chourasiya J, Keshavrao Kamble R, Singh Tanwar Y. Novel approaches in extended release drug delivery systems. Int J Pharm Sci Rev Res. 2013;20(1):218–27.

    CAS  Google Scholar 

  10. Keraliya RA, Patel C, Patel P, Keraliya V, Soni TG, Patel RC, Patel MM. Osmotic drug delivery system as a part of modified release dosage form. ISRN Pharmaceutics. 2012;2012:1–9. https://doi.org/10.5402/2012/528079.

    Article  CAS  Google Scholar 

  11. Humar A. Valganciclovir for cytomegalovirus prevention and treatment. Therapy. 2005;2(3):333–41. https://doi.org/10.1586/14750708.2.3.333.

    Article  CAS  Google Scholar 

  12. Bathool A, Gowda DV, Khan MS, Ahmed A, Vasudha SL, Rohitash K. Development and evaluation of microporous osmotic tablets of diltiazem hydrochloride. Journal of Advanced Pharmaceutical Technology and Research. 2012;3(2):124–9. https://doi.org/10.4103/2231-4040.97292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dasankoppa F, Ningangowdar M, Sholapur H. Formulation and evaluation of controlled porosity osmotic pump for oral delivery of ketorolac. Journal of Basic and Clinical Pharmacy. 2013;4(1):2. https://doi.org/10.4103/0976-0105.109398.

    Article  CAS  Google Scholar 

  14. Pekamwar S, Kulkarni D, Gadade D. Accidental formation of eutectics during crystal engineering of lamotrigine. Asian J Pharm. 2021;15(1):11–2.

    Google Scholar 

  15. Gadade DD, Kulkarni DA, Rathi PB, Pekamwar SS, Joshi SS. Solubility enhancement of lornoxicam by crystal engineering. Indian J Pharm Sci. 2017;79(2):277–86. https://doi.org/10.4172/pharmaceutical-sciences.1000226.

    Article  CAS  Google Scholar 

  16. Gundu R, Pekamwar S, Shelke S, Shep S, Kulkarni D (2020) Sustained release formulation of Ondansetron HCl using osmotic drug delivery approach. Drug Dev Ind Pharm. 46(3). https://doi.org/10.1080/03639045.2020.1716372.

  17. Kulshrestha M, Kulshrestha R. Formulation and evaluation of osmotic pump tablet of cefadroxil. Int J Pharm Pharm Sci. 2013;5(4):114–8.

    Google Scholar 

  18. Xin T, Zhao Y, Jing H, Zhang W, Gao Y, Yang X, Qu X, Pan W. A time-released osmotic pump fabricated by compression-coated method: formulation screen, mechanism research and pharmacokinetic study. Asian J Pharm Sci. 2014;9(4):208–17. https://doi.org/10.1016/j.ajps.2014.05.003.

    Article  Google Scholar 

  19. Patil PR, Bobade VD, Sawant PL, Marathe RP (2016) Emerging trends in compression coated tablet dosage forms: a review. Int J Pharm Sci Res. 7(3), 930–938. https://doi.org/10.13040/IJPSR.0975-8232.7(3).930--38.

  20. Patel A, Dodiya H, Shelate P, Shastri D, Dave D. Design, characterization, and optimization of controlled drug delivery system containing antibiotic drug/s. Journal of Drug Delivery. 2016;2016:1–15. https://doi.org/10.1155/2016/9024173.

    Article  CAS  Google Scholar 

  21. Kumar A, Singh BK, Joshi DK. Development of aceclofenac osmotic pump tablet for controlled drug delivery. Indian Drugs. 2017;54(12):69–71.

    Article  Google Scholar 

  22. Gundu R, Pekamwar S, Shelke S, Kulkarni D, Shep S. Development, optimization and pharmacokinetic evaluation of biphasic extended-release osmotic drug delivery system of trospium chloride for promising application in treatment of overactive bladder. Futur J Pharm Sci. 2021;7:160. https://doi.org/10.1186/s43094-021-00311-6.

    Article  Google Scholar 

  23. Mondal S, Goluguri SR, Mondal P, Prathyusha VS. Development and validation of few UV Spectrophotometric methods for the determination of Valganciclovir in bulk and pharmaceutical dosage form. Pharmaceutical Methods. 2018;9(2):64–8.

    Article  CAS  Google Scholar 

  24. Pudjiastuti P, Wafiroh S, Hendradi E, Darmokoesoemo H, Harsini M, Nahar L, Sarker SD. Disintegration, in vitro dissolution, and drug release kinetics profiles of k-Carrageenan-based nutraceutical hard-shell capsules Containing Salicylamide. Open Chem. 2020;18(1):226–31. https://doi.org/10.1515/chem-2020-0028.

    Article  CAS  Google Scholar 

  25. Dasankoppa FS, Ningangowdar M, Sholapur H. Formulation and evaluation of controlled porosity osmotic pump for oral delivery of ketorolac. Journal of basic and clinical pharmacy. 2012;4(1):2–9. https://doi.org/10.4103/0976-0105.109398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Missaghi S, Patel P, Farrell TP, Huatan H, Rajabi-Siahboomi AR. Investigation of critical core formulation and process parameters for osmotic pump oral drug delivery. AAPS PharmSciTech. 2014;15(1):149–60. https://doi.org/10.1208/s12249-013-0040-4.

    Article  CAS  PubMed  Google Scholar 

  27. Gao Z, Ngo C, Ye W, Rodriguez JD, Keire D, Sun D, Wen H, Jiang W. Effects of dissolution medium pH and simulated gastrointestinal contraction on drug release from nifedipine extended-release tablets. J Pharm Sci. 2019;108(3):1189–94. https://doi.org/10.1016/j.xphs.2018.10.014.

    Article  CAS  PubMed  Google Scholar 

  28. Seeger N, Lange S, Klein S. Impact of vibration and agitation speed on dissolution of USP prednisone tablets RS and various IR tablet formulations. AAPS PharmSciTech. 2015;16(4):759–66. https://doi.org/10.1208/s12249-015-0356-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arjun N, Narendar D, Sunitha K, Harika K, Nagaraj B. Development, evaluation, and influence of formulation and process variables on in vitro performance of oral elementary osmotic device of atenolol. International journal of pharmaceutical investigation. 2016;6(4):238–46. https://doi.org/10.4103/2230-973X.195951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Geetha BPRM, Purushothama N, Sanki U. Optimization and development of swellable controlled porosity osmotic pump tablet for theophylline. 2009;8(June):247–55.

    Google Scholar 

  31. Elshafeey AH, Sami EI. Preparation and in-vivo pharmacokinetic study of a novel extended release compression coated tablets of fenoterol hydrobromide. AAPS PharmSciTech. 2008;9(3):1016–24. https://doi.org/10.1208/s12249-008-9135-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rhee YS, Park JH, Park S, Park CW, Ha JM, Jeong KW, Lee DS, Park ES. Analysis of acamprosate in beagle dog plasma by LC-MS-MS. Arch Pharmacal Res. 2008;31(8):1035–9. https://doi.org/10.1007/s12272-001-1265-7.

    Article  CAS  Google Scholar 

  33. Gupta BP, Thakur N, Jain NP, Banweer J, Jain S (2010) Osmotically controlled drug delivery system with associated drugs. J Pharm Pharm Sci. 13(4), 571–588. https://doi.org/10.18433/j38w25.

  34. Kaushik S, Pathak K (2016) Development and evaluation of monolithic osmotic tablet of ketoprofen: using solid dispersion technique. Int J Pharm Pharm Sci. 8(12), 41–47. https://doi.org/10.22159/ijpps.2016v8i12.11437.

  35. Maheshwari R, Todke P, Kuche K, Raval N, Tekade RK (2018) Micromeritics in pharmaceutical product development. In Dosage Form Design Considerations: Volume I (Issue January). Elsevier Inc. https://doi.org/10.1016/B978-0-12-814423-7.00017-4.

  36. Mohamed MI, Al-Mahallawi AM, Awadalla SM. Development and optimization of osmotically controlled drug delivery system for poorly aqueous soluble diacerein to improve its bioavailability. Drug Dev Ind Pharm. 2020;46(5):814–25. https://doi.org/10.1080/03639045.2020.1757696.

    Article  CAS  PubMed  Google Scholar 

  37. Tuntikulwattana S, Mitrevej A, Kerdcharoen T, Williams DB, Sinchaipanid N. Development and optimization of micro/nanoporous osmotic pump tablets. AAPS PharmSciTech. 2010;11(2):924–35. https://doi.org/10.1208/s12249-010-9446-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Narayanan A, George P, Akshay D. Application of 32 factorial d-optimal design in formulation of porous osmotic pump tablets of ropinirole; an anti-Parkinson’s agent. J Young Pharm. 2017;9(1):87–93. https://doi.org/10.5530/jyp.2017.9.17.

    Article  CAS  Google Scholar 

  39. Jagtap PC, Prakya V, Bhise KS (2018) Design and development of controlled porosity osmotic tablets of Garcinia Indica extract. J Drug Deliv Ther. 8(4), 145–150. https://doi.org/10.22270/jddt.v8i4.1752.

  40. Edavalath S, Shivanand K, Prakasam K, Rao BP, Divakar G. Formulation development and optimization of controlled porosity osmotic pump tablets of diclofenac sodium. Int J Pharm Pharm Sci. 2011;3(1):80–7.

    CAS  Google Scholar 

  41. Bhanushali R, Wakode R, Bajaj A. Monolithic osmotic tablets for controlled delivery of antihypertensive drug. J Pharm Innov. 2009;4(2):63–70. https://doi.org/10.1007/s12247-009-9055-5.

    Article  Google Scholar 

  42. Yadav G, Bansal M, Thakur N, Sargam, and Khare, P. Multilayer tablets and their drug release kinetic models for oral controlled drug delivery system. Middle East J Sci Res. 2013;16(6):782–95. https://doi.org/10.5829/idosi.mejsr.2013.16.06.75176.

    Article  CAS  Google Scholar 

  43. Kiser TH, Fish DN, Zamora MR. Evaluation of valganciclovir pharmacokinetics in lung transplant recipients. J Heart Lung Transplant. 2012;31(2):159–66. https://doi.org/10.1016/j.healun.2011.11.016.

    Article  PubMed  Google Scholar 

  44. Ning M, Zhou Y, Chen G, Mei X (2011) Preparation and in vitro/in vivo evaluation of vinpocetine elementary osmotic pump system. Adv Pharmacol Sci. 2011. https://doi.org/10.1155/2011/385469.

  45. Shahi SR, Zadbuke NS, Gulecha B, Shivanikar SS, Shinde SB. Design and development of controlled porosity osmotic tablet of diltiazem hydrochloride. Journal of Advanced Pharmaceutical Technology and Research. 2012;3(4):229–36. https://doi.org/10.4103/2231-4040.104714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Suryadevara V, Lankapalli SR, Rao Vejella UM, Mupparaju S, Chava SB. Formulation and evaluation of Losartan potassium osmotic controlled matrix tablets. Indian Journal of Pharmaceutical Education and Research. 2014;48(4):18–26. https://doi.org/10.5530/ijper.48.4s.3.

    Article  Google Scholar 

  47. Banerjee A, Verma PRP, Gore S. Application of Box-Behnken design to optimize the osmotic drug delivery system of metoprolol succinate and its in vivo evaluation in beagle dogs. J Pharm Innov. 2016;11(2):120–33. https://doi.org/10.1007/s12247-016-9245-x.

    Article  Google Scholar 

  48. Li N, Fan L, Wu B, Dai G, Jiang C, Guo Y, Wang D. Preparation and in vitro/in vivo evaluation of azilsartan osmotic pump tablets based on the preformulation investigation. Drug Dev Ind Pharm. 2019;45(7):1079–88. https://doi.org/10.1080/03639045.2019.1593441.

    Article  CAS  PubMed  Google Scholar 

  49. Li Y, Pan H, Duan H, Chen J, Zhu Z, Fan J, Li P, Yang X, Pan W. Double-layered osmotic pump controlled release tablets of actarit: in vitro and in vivo evaluation. Asian J Pharm Sci. 2019;14(3):340–8. https://doi.org/10.1016/j.ajps.2018.05.009.

    Article  PubMed  Google Scholar 

  50. Hashem HM, Abdou AR, Taha NF, Mursi NM, Emara LH. Formulation and stability studies of metformin hydrochloride in a controlled porosity osmotic pump system. Journal of Applied Pharmaceutical Science. 2020;10(4):100–12. https://doi.org/10.7324/JAPS.2020.104013.

    Article  CAS  Google Scholar 

  51. Gupta SK, Singhvi IJ, Ashawat MS, Sharma K, Shirsat M, Vaya R. Formulation and evaluation of extended release film coated tablet of divalproex sodium. Inventi Rapid. 2017;1(3):1–4.

    Google Scholar 

Download references

Acknowledgements

The authors thank Wockhardt Research Centre, Aurangabad and Dr. Reddy’s Hyderabad for providing the gift samples of drugs and excipients. The authors are grateful to the School of Pharmacy, Swami RamanandTeerthMarathwada University, Vishnupuri, Nanded, Maharashtra, India, for providing facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Contributions

Author RG performed the complete research work. Author SP guided for the proposed research work. The result analysis and interpretation are done by author SS. Author DK and DG contributed to the writing and editing of the manuscript. Author SS contributed for revising the manuscript during major revisions through result analysis, development of new graphics, and by removing grammatical and sentence errors. All the authors approved the manuscript for submission.

Corresponding author

Correspondence to Ramakanth Gundu.

Ethics declarations

Ethics approval and consent to participate

All animal experiments were approved by the Animal Ethical Committee of Wockhardt Research Center, Aurangabad. All institutional and national guidelines for the care and use of laboratory animals were followed.

Consent for publication

Not applicable.

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3589 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gundu, R., Pekamwar, S., Shelke, S. et al. Development and pharmacokinetic evaluation of osmotically controlled drug delivery system of Valganciclovir HCl for potential application in the treatment of CMV retinitis. Drug Deliv. and Transl. Res. 12, 2708–2729 (2022). https://doi.org/10.1007/s13346-022-01122-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-022-01122-9

Keywords

Navigation