Skip to main content

Advertisement

Log in

Design of ophthalmic micelles loaded with diclofenac sodium: effect of chitosan and temperature on the block-copolymer micellization behaviour

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Diclofenac sodium 0.1% is a commonly used NSAID with well-documented clinical efficacy in reducing postoperative inflammation; however, its corneal tolerability and ophthalmic tissue bioavailability require further improvement. Advanced micellar delivery systems composed of block-copolymers and chitosan showing fine balance between the mucoadhesion and mucus permeation, capable to slip through the mucus barrier and adhere to the epithelial ocular surface, may be used to tackle both challenges. The aggregation behaviour of the block-copolymers in the presence of different additives will dramatically influence the quality attributes like particle size, particle size distribution, drug-polymer interaction, zeta potential, drug incorporation, important for the delicate balance among mucoadhesion and permeation, as well as safety and efficacy of the ophthalmic micelles. Therefore, quality by design approach and D-optimal experimental design model were used to create a pool of useful data for the influence of chitosan and the formulation factors on the block copolymer’s aggregation behaviour during the development and optimization of Diclofenac loaded Chitosan/Lutrol F127 or F68 micelles. Particle size, polydispersity index, dissolution rate, FTIR and DSC studies, NMR spectroscopy, cytotoxicity, mucoadhesivity, mucus permeation studies, and bioadhesivity were assessed as critical quality attributes. FTIR and DSC studies pointed to the chaotropic effect of chitosan during the micelle aggregation. Mainly, Pluronic F68 micellization behaviour was more dramatically affected by the presence of chitosan, and self-aggregation into larger micelles with high polydispersity index was favoured at higher chitosan concentration. The optimized formulation with highest potential for ophthalmic delivery of diclofenac sodium, good cytotoxicity profile, delicate balance of the mucoadhesivity, and mucus permeation was in the design space of Chitosan/Lutrol F127 micelles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Russo A, Costagliola C, Delcassi L, Parmeggiani F, Romano MR, Dell’Omo R, et al. Topical nonsteroidal anti-inflammatory drugs for macular edema. Mediators Inflamm. Hindawi Publishing Corporation; 2013;2013:476525.

  2. Grzybowski A, Zemaitiene R, Mikalauskiene L. Post-cataract cystoid macular oedema prevention—update 2019. Eur Ophthalmic Rev. 2019;13:37–43.

    Article  Google Scholar 

  3. Mandal A, Bisht R, Rupenthal ID, Mitra AK. Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies. J. Control. Release. Elsevier B.V.; 2017. p. 96–116.

  4. Vaishya RD, Khurana V, Patel S, Mitra AK. Controlled ocular drug delivery with nanomicelles. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology Wiley-Blackwell. 2014;6:422–37.

    Article  CAS  Google Scholar 

  5. Grimaudo MA, Pescina S, Padula C, Santi P, Concheiro A, Alvarez-Lorenzo C, et al. Topical application of polymeric nanomicelles in ophthalmology: a review on research efforts for the noninvasive delivery of ocular therapeutics. Expert Opin. Drug Deliv. Taylor and Francis Ltd; 2019. p. 397–413.

  6. Shi S, Zhang Z, Luo Z, Yu J, Liang R, Li X, et al. Chitosan grafted methoxy poly(ethylene glycol)-poly(ε-caprolactone) nanosuspension for ocular delivery of hydrophobic diclofenac. Sci Rep. Nature Publishing Group; 2015;5.

  7. Lin HR, Chang PC. Novel pluronic-chitosan micelle as an ocular delivery system. J Biomed Mater Res - Part B Appl Biomater. J Biomed Mater Res B Appl Biomater; 2013;101 B:689–99.

  8. Pepić I, Hafner A, Lovrić J, Pirkić B, Filipović-Grčić J. A nonionic surfactant/chitosan micelle system in an innovative eye drop formulation. J Pharm Sci. John Wiley and Sons Inc.; 2010;99:4317–25.

  9. Li X, Zhang Z, Li J, Sun S, Weng Y, Chen H. Diclofenac/biodegradable polymer micelles for ocular applications. Nanoscale Royal Society of Chemistry. 2012;4:4667–73.

    CAS  Google Scholar 

  10. Lynch C, Kondiah PPD, Choonara YE, du Toit LC, Ally N, Pillay V. Advances in biodegradable nano-sized polymer-based ocular drug delivery. Polymers (Basel). MDPI AG; 2019.

  11. Cholkar K, Patel A, Dutt Vadlapudi A, K. Mitra A. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Patents Nanomedicinee. Bentham Science Publishers Ltd.; 2012;2:82–95.

  12. Lee TH, Choi W, Ji YS, Yoon KC. Comparison of ketorolac 0.45% versus diclofenac 0.1% for macular thickness and volume after uncomplicated cataract surgery. Acta Ophthalmol. Blackwell Publishing Ltd; 2016;94:e177–82.

  13. Gaynes B. Topical ophthalmic NSAIDs: a discussion with focus on nepafenac ophthalmic suspension. Clin Ophthalmol. Dove Medical Press Ltd.; 2008;2:355.

  14. Dehar N, Singh G, Gupta A. Comparative study of the ocular efficacy and safety of diclofenac sodium (0.1%) ophthalmic solution with that of ketorolac tromethamine (0.5%) ophthalmic solution in patients with acute seasonal allergic conjunctivitis. Int J Appl Basic Med Res. Medknow; 2012;2:25.

  15. Chinchurreta Capote AM, Lorenzo Soto M, Rivas Ruiz F, Caso Peláez E, García Vazquez A, Ramos Suárez A, et al. Comparative study of the efficacy and safety of bromfenac, nepafenac and diclofenac sodium for the prevention of cystoid macular edema after phacoemulsification. Int J Ophthalmol. International Journal of Ophthalmology (c/o Editorial Office); 2018;11:1210–6.

  16. Bodaghi B. Diclofenac sodium 0.1% ophthalmic solution: update on pharmacodynamics, clinical interest and safety profile. Expert Rev. Ophthalmol. Taylor & Francis; 2008. p. 139–48.

  17. Quintana-Hau JD, Cruz-Olmos E, López-Sánchez MI, Sánchez-Castellanos V, Baiza-Durán L, González JR, et al. Characterization of the novel ophthalmic drug carrier Sophisen in two of its derivatives: 3A OftenoTM and Modusik-A OftenoTM. Drug Dev Ind Pharm Informa Healthcare. 2005;31:263–9.

    Article  CAS  Google Scholar 

  18. Abdelkader H, Fathalla Z, Moharram H, Ali TFS, Pierscionek B. Cyclodextrin enhances corneal tolerability and reduces ocular toxicity caused by diclofenac. Oxid Med Cell Longev. Hindawi Limited; 2018;2018.

  19. Fujisawa T, Miyai H, Hironaka K, Tsukamoto T, Tahara K, Tozuka Y, et al. Liposomal diclofenac eye drop formulations targeting the retina: formulation stability improvement using surface modification of liposomes. Int J Pharm Int J Pharm. 2012;436:564–7.

    CAS  PubMed  Google Scholar 

  20. Ara T, Sharma SB, Bhat SA, Bh A, Ari, Deva AS, et al. Preparation and evaluation of ocular inserts of diclofenac sodium for controlled drug delivery. 2014;

  21. Asasutjarit R, Thanasanchokpibull S, Fuongfuchat A, Veeranondha S. Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels. Int J Pharm Int J Pharm. 2011;411:128–35.

    CAS  PubMed  Google Scholar 

  22. Li M, Lan J, Li X, Xin M, Wang H, Zhang F, et al. Novel ultra-small micelles based on ginsenoside Rb1: a potential nanoplatform for ocular drug delivery. Drug Deliv Taylor and Francis Ltd. 2019;26:481–9.

    CAS  Google Scholar 

  23. Al Khateb K, Ozhmukhametova EK, Mussin MN, Seilkhanov SK, Rakhypbekov TK, Lau WM, et al. In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery. Int J Pharm. Elsevier B.V.; 2016;502:70–9.

  24. Akash MSH, Rehman K. Recent progress in biomedical applications of pluronic (PF127): Pharmaceutical perspectives. J. Control. Release. Elsevier B.V.; 2015. p. 120–38.

  25. Popa L, Ghica MV, Dinu-Pîrvu CE, Irimia T. Chitosan: A good candidate for sustained release ocular drug delivery systems. Chitin-Chitosan - Myriad Funct Sci Technol. InTech; 2018.

  26. Alruwaili NK, Zafar A, Imam SS, Alharbi KS, Alotaibi NH, Alshehri S, et al. Stimulus responsive ocular gentamycin-ferrying chitosan nanoparticles hydrogel: formulation optimization, ocular safety and antibacterial assessment. Int J Nanomedicine. Dove Medical Press Ltd.; 2020;15:4717–37.

  27. Husseini GA, Rapoport NY, Christensen DA, Pruitt JD, Pitt WG. Kinetics of ultrasonic release of doxorubicin from pluronic P105 micelles. Colloids Surfaces B Biointerfaces Elsevier. 2002;24:253–64.

    Article  CAS  Google Scholar 

  28. Husseini GA, Myrup GD, Pitt WG, Christensen DA, Rapoport NY. Factors affecting acoustically triggered release of drugs from polymeric micelles. J Control Release. 2000;69:43–52.

    Article  CAS  PubMed  Google Scholar 

  29. Moretton MA, Chiappetta DA, Sosnik A. Cryoprotection-lyophilization and physical stabilization of rifampicin-loaded flower-like polymeric micelles. J R Soc Interface Royal Society. 2012;9:487–502.

    Article  CAS  Google Scholar 

  30. Gjoseva S, Geskovski N, Sazdovska SD, Popeski-Dimovski R, Petruševski G, Mladenovska K, et al. Design and biological response of doxycycline loaded chitosan microparticles for periodontal disease treatment. Carbohydr Polym. 2018;186.

  31. Ahmed F, Alexandridis P, Neelamegham S. Synthesis and application of fluorescein-labeled pluronic block copolymers to the study of polymer-surface interactions. Langmuir ACS. 2001;17:537–46.

    Article  CAS  Google Scholar 

  32. Pepić I, Filipović-Grčić J, Jalšenjak I. Bulk properties of nonionic surfactant and chitosan mixtures. Colloids Surfaces A Physicochem Eng Asp. Elsevier; 2009;336:135–41.

  33. Su YL, Liu HZ, Wang J, Chen JY. Study of salt effects on the micellization of PEO-PPO-PEO block copolymer in aqueous solution by FTIR spectroscopy. Langmuir. 2002;18:865–71.

    Article  CAS  Google Scholar 

  34. Hejjaji EMA, Smith AM, Morris GA. Evaluation of the mucoadhesive properties of chitosan nanoparticles prepared using different chitosan to tripolyphosphate (CS:TPP) ratios. Int J Biol Macromol [Internet]. Elsevier B.V.; 2018 [cited 2021 Jun 30];120:1610–7. Available from: https://pubmed.ncbi.nlm.nih.gov/30282010/

  35. Pai RV, Monpara JD, Vavia PR. Exploring molecular dynamics simulation to predict binding with ocular mucin: An in silico approach for screening mucoadhesive materials for ocular retentive delivery systems. J Control Release. Elsevier B.V.; 2019;309:190–202.

  36. Bandi SP, Kumbhar YS, Venuganti VVK. Effect of particle size and surface charge of nanoparticles in penetration through intestinal mucus barrier. J Nanoparticle Res [Internet]. Springer; [cited 2021 Jun 30];22:1–11. Available from: 2020. https://doi.org/10.1007/s11051-020-04785-y.

    Article  PubMed Central  Google Scholar 

  37. Friedl H, Dünnhaupt S, Hintzen F, Waldner C, Parikh S, Pearson JP, et al. Development and evaluation of a novel mucus diffusion test system approved by self-nanoemulsifying drug delivery Systems. J Pharm Sci [Internet]. John Wiley and Sons Inc.; 2013 [cited 2021 Jun 30];102:4406–13. Available from: https://pubmed.ncbi.nlm.nih.gov/24258284/

  38. Kiss EL, Berkó S, Gácsi A, Kovács A, Katona G, Soós J, et al. Development and characterization of potential ocular mucoadhesive nano lipid carriers using full factorial design. Pharmaceutics [Internet]. MDPI AG; 2020 [cited 2021 Jun 30];12:682. Available from: www.mdpi.com/journal/pharmaceutics

  39. Wuyts B, Riethorst D, Brouwers J, Tack J, Annaert P, Augustijns P. Evaluation of fasted state human intestinal fluid as apical solvent system in the Caco-2 absorption model and comparison with FaSSIF. Eur J Pharm Sci [Internet]. Elsevier; 2015 [cited 2021 Jun 30];67:126–35. Available from: https://pubmed.ncbi.nlm.nih.gov/25433246/

  40. Collado-González M, Kaur G, González-Espinosa Y, Brooks R, Goycoolea FM. Characterisation of the interaction among oil-in-water nanocapsules and mucin. Biomimetics [Internet]. MDPI Multidisciplinary Digital Publishing Institute; 2020 [cited 2021 Jun 30];5. Available from: https://pubmed.ncbi.nlm.nih.gov/32731584/

  41. Gjoseva S, Geskovski N, Dimchevska S, Popeski-Dimovski R, Petruševski G, Mladenovska K, et al. Design and biological response of doxycycline loaded chitosan microparticles for periodontal disease treatment. Carbohydr Polym [Internet]. 2018; Available from: http://linkinghub.elsevier.com/retrieve/pii/S0144861718300614

  42. Alexandridis P, Hatton TA. Poly(ethylene oxide)-poly(propylene oxide )-poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surfaces A Physicochem Eng Asp. 1995;96:1–46.

    Article  CAS  Google Scholar 

  43. Yan CH, Yuan XB, Kang C, Zhao YH, Liu J, Guo Y, et al. Preparation of carmustine-loaded PLA ultrasmall-nanoparticles by adjusting micellar behavior of surfactants. J Appl Polym Sci. 2008;110:2446–52.

    Article  CAS  Google Scholar 

  44. Ur-Rehman T, Tavelin S, Gröbner G. Chitosan in situ gelation for improved drug loading and retention in poloxamer 407 gels. Int J Pharm Int J Pharm. 2011;409:19–29.

    CAS  PubMed  Google Scholar 

  45. Basak R, Bandyopadhyay R. Encapsulation of hydrophobic drugs in pluronic F127 micelles: effects of drug hydrophobicity, solution temperature, and pH. Langmuir. 2013;29:4350–6.

    Article  CAS  PubMed  Google Scholar 

  46. Au SH, Kumar P, Wheeler AR. A new angle on Pluronic additives: advancing droplets and understanding in digital microfluidics. Langmuir Langmuir. 2011;27:8586–94.

    Article  CAS  PubMed  Google Scholar 

  47. Su YL, Wang J, Liu HZ. FTIR spectroscopic investigation of effects of temperature and concentration on PEO-PPO-PEO block copolymer properties in aqueous solutions. Macromolecules American Chemical Society. 2002;35:6426–31.

    Article  CAS  Google Scholar 

  48. Kacar G. Molecular understanding of interactions, structure, and drug encapsulation efficiency of Pluronic micelles from dissipative particle dynamics simulations. Colloid Polym Sci Springer Verlag. 2019;297:1037–51.

    Article  CAS  Google Scholar 

  49. Study of physicochemical parameters affecting the release of diclofenac sodium from lipophilic matrix tablets. Acta Chim Slov. 2004;

  50. Žilnik LF, Jazbinšek A, Hvala A, Vrečer F, Klamt A. Solubility of sodium diclofenac in different solvents. Fluid Phase Equilib Elsevier. 2007;261:140–5.

    Article  Google Scholar 

  51. Riess G. Micellization of block copolymers. Prog. Polym. Sci. 2003. p. 1107–70.

  52. Luo H, Jiang K, Liang X, Liu H, Li Y. Small molecule-mediated self-assembly behaviors of Pluronic block copolymers in aqueous solution: impact of hydrogen bonding on the morphological transition of Pluronic micelles. Soft Matter Royal Society of Chemistry. 2019;16:142–51.

    Article  Google Scholar 

  53. Branca C, Khouzami K, Wanderlingh U, D’Angelo G. Effect of intercalated chitosan/clay nanostructures on concentrated pluronic F127 solution: A FTIR-ATR, DSC and rheological study. J Colloid Interface Sci. Academic Press Inc.; 2018;517:221–9.

  54. Branca C, D’Angelo G. Aggregation behavior of pluronic F127 solutions in presence of chitosan/clay nanocomposites examined by dynamic light scattering. J Colloid Interface Sci. 2019;542:289–95.

    Article  CAS  PubMed  Google Scholar 

  55. Marsh LH, Coke M, Dettmar PW, Ewen RJ, Havler M, Nevell TG, et al. Adsorbed poly(ethyleneoxide)-poly(propyleneoxide) copolymers on synthetic surfaces: spectroscopy and microscopy of polymer structures and effects on adhesion of skin-borne bacteria. J Biomed Mater Res. John Wiley & Sons, Ltd; 2002;61:641–52.

  56. Kowalonek J. Surface and thermal behavior of chitosan/poly(ethylene oxide) blends. Mol Cryst Liq Cryst. Taylor and Francis Inc.; 2016;640:78–89.

  57. Rakkapao N, Vao-soongnern V. Molecular simulation and experimental studies of the miscibility of chitosan/poly(ethylene oxide) blends. J Polym Res Kluwer Academic Publishers. 2014;21:1–10.

    CAS  Google Scholar 

  58. Alexandridis P, Holzwarth JF, Hatton TA. Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules. 1994;27:2414–25.

    Article  CAS  Google Scholar 

  59. Ben Henda M, Gharbi A. Temperature, concentration and salt effect on F68 tri-block copolymer in aqueous solution: Rheological study. Polym Sci - Ser A. Maik Nauka-Interperiodica Publishing; 2017;59:445–50.

  60. Kincl M, Meleh M, Veber M, Vrečer F. Study of physicochemical parameters affecting the release of diclofenac sodium from lipophilic matrix tablets. Acta Chim Slov. 2004;51:409–25.

    CAS  Google Scholar 

  61. Koliqi R, Dimchevska S, Geskovski N, Petruševski G, Chacorovska M, Pejova B, et al. PEO-PPO-PEO/Poly(DL-lactide-co-caprolactone) Nanoparticles as carriers for SN-38: design, optimization and nano-bio interface interactions. Curr Drug Deliv [Internet]. 2016 [cited 2016 Oct 1];13:339–52. Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1567-2018&volume=13&issue=3&spage=339

  62. Kim IY, Yoo MK, Kim BC, Kim SK, Lee HC, Cho CS. Preparation of semi-interpenetrating polymer networks composed of chitosan and poloxamer. Int J Biol Macromol Elsevier. 2006;38:51–8.

    Article  CAS  Google Scholar 

  63. Kothari R, Winter HH, Watkins JJ. Rheological study of order-to-disorder transitions and phase behavior of block copolymer-surfactant complexes containing hydrogen-bonded small molecule additives. Macromolecules American Chemical Society. 2014;47:8048–55.

    Article  CAS  Google Scholar 

  64. Cassani DAD, Altomare L, De Nardo L, Variola F. Physicochemical and nanomechanical investigation of electrodeposited chitosan:PEO blends. J Mater Chem B. Royal Society of Chemistry; 2015;3:2641–50.

  65. Zhang Y, Liu BL, Wang LJ, Deng YH, Zhou SY, Feng JW. Preparation, structure and properties of acid aqueous solution plasticized thermoplastic chitosan. Polymers (Basel). MDPI AG; 2019;11.

  66. Pardo-Castaño C, Bolaños G. Solubility of chitosan in aqueous acetic acid and pressurized carbon dioxide-water: experimental equilibrium and solubilization kinetics. J Supercrit Fluids. Elsevier B.V.; 2019;151:63–74.

  67. Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009. p. 641–78.

  68. Kaur M, Datta M. Diclofenac sodium adsorption onto montmorillonite: adsorption equilibrium studies and drug release kinetics. Adsorpt Sci Technol. Multi-Science Publishing Co. Ltd; 2014;32:365–87.

  69. Bizarria MTM, D’Ávila MA, Mei LHI. Non-woven nanofiber chitosan/PEO membranes obtained by electrospinning. Brazilian J Chem Eng. Assoc. Brasiliera de Eng. Quimica/Braz. Soc. Chem. Eng.; 2014;31:57–68.

  70. Santos JE dos, Soares J da P, Dockal ER, Campana Filho SP, Cavalheiro ÉTG. Caracterização de quitosanas comerciais de diferentes origens. Polímeros. FapUNIFESP (SciELO); 2003;13:242–9.

  71. Li J, Li Y, Lee TC, Huang Q. Structure and physical properties of zein/pluronic F127 composite films. J Agric Food Chem. American Chemical Society; 2013;61:1309–18.

  72. Ranaldi G, Marigliano I, Vespignani I, Perozzi G, Sambuy Y. The effect of chitosan and other polycations on tight junction permeability in the human intestinal Caco-2 cell line. J Nutr Biochem J Nutr Biochem. 2002;13:157–67.

    Article  CAS  PubMed  Google Scholar 

  73. Deli MA. Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochim. Biophys. Acta - Biomembr. Elsevier; 2009. p. 892–910.

  74. Howell BA, Alomari M. (PDF) Thermal degradation of poly(propylene oxide). 37th NATAS North Am Therm Anal Soc [Internet]. Lubbock, Texas; 2009. Available from: https://www.researchgate.net/publication/272167208_Thermal_Degradation_Of_Polypropylene_oxide

  75. Aubrecht KB, Grubbs RB. Synthesis and characterization of thermoresponsive amphiphilic block copolymers incorporating a poly(ethylene oxide-stat-propylene oxide) block. J Polym Sci Part A Polym Chem [Internet]. John Wiley & Sons, Ltd; 2005 [cited 2021 Apr 5];43:5156–67. Available from: https://doi.wiley.com/10.1002/pola.21007

  76. Li W, Wu J, Zhang J, Wang J, Xiang D, Luo S, et al. Puerarin-loaded PEG-PE micelles with enhanced anti-apoptotic effect and better pharmacokinetic profile. Drug Deliv [Internet]. Taylor and Francis Ltd; 2018 [cited 2021 Apr 5];25:827–37. Available from: https://www.tandfonline.com/doi/full/10.1080/10717544.2018.1455763

  77. Kamrul Hasan SM, Li R, Wang Y, Reddy N, Liu W, Qiu Y, et al. Sustained local delivery of diclofenac from three-dimensional ultrafine fibrous protein scaffolds with ultrahigh drug loading capacity. Nanomaterials [Internet]. MDPI AG; 2019 [cited 2021 Apr 5];9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669596/

  78. Ma JH, Guo C, Tang YL, Liu HZ. 1H NMR spectroscopic investigations on the micellization and gelation of PEO-PPO-PEO block copolymers in aqueous solutions. Langmuir [Internet]. American Chemical Society ; 2007 [cited 2021 Apr 5];23:9596–605. Available from: https://pubs.acs.org/doi/abs/10.1021/la701221f

  79. Falavigna M, Stein PC, Flaten GE, Di Cagno MP. Impact of mucin on drug diffusion: development of a straightforward in vitro method for the determination of drug diffusivity in the presence of mucin. Pharmaceutics [Internet]. MDPI AG; 2020 [cited 2021 Jun 30];12. Available from: https://pubmed.ncbi.nlm.nih.gov/32079348/

  80. Wang YY, Lai SK, Suk JS, Pace A, Cone R, Hanes J. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew Chemie - Int Ed [Internet]. NIH Public Access; 2008 [cited 2021 Jun 30];47:9726–9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666733/

  81. Popov A. Mucus-penetrating particles and the role of ocular mucus as a barrier to micro- and nanosuspensions. J Ocul Pharmacol Ther [Internet]. Mary Ann Liebert Inc.; 2020 [cited 2021 Jun 30];36:366–75. Available from: https://pubmed.ncbi.nlm.nih.gov/32667250/

  82. Bandi SP, Bhatnagar S, Venuganti VVK. Advanced materials for drug delivery across mucosal barriers. Acta Biomater. Acta Materialia Inc; 2021. p. 13–29.

  83. Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues [Internet]. Adv. Drug Deliv. Rev. Adv Drug Deliv Rev; 2009 [cited 2021 Jun 30]. p. 158–71. Available from: https://pubmed.ncbi.nlm.nih.gov/19133304/

  84. Newby JM, Seim I, Lysy M, Ling Y, Huckaby J, Lai SK, et al. Technological strategies to estimate and control diffusive passage times through the mucus barrier in mucosal drug delivery [Internet]. Adv. Drug Deliv. Rev. Elsevier B.V.; 2018 [cited 2021 Jun 30]. p. 64–81. Available from: https://pubmed.ncbi.nlm.nih.gov/29246855/

  85. Leal J, Smyth HDC, Ghosh D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int. J. Pharm. Elsevier B.V.; 2017. p. 555–72.

  86. Hori Y. Secreted mucins on the ocular surface. Investig Ophthalmol Vis Sci [Internet]. Association for Research in Vision and Ophthalmology Inc.; 2018 [cited 2021 Jun 30];59:DES151–6. Available from: https://pubmed.ncbi.nlm.nih.gov/30481820/

  87. Guan Y, Huang J, Zuo L, Xu J, Si L, Qiu J, et al. Effect of pluronic P123 and F127 block copolymer on P-glycoprotein transport and CYP3A metabolism. Arch Pharm Res Arch Pharm Res. 2011;34:1719–28.

    Article  CAS  PubMed  Google Scholar 

  88. Batrakova EV, Li S, Elmquist WF, Miller DW, Alakhov VY, Kabanov AV. Mechanism of sensitization of MDR cancer cells by Pluronic block copolymers: selective energy depletion. Br J Cancer Nature Publishing Group. 2001;85:1987–97.

    CAS  Google Scholar 

  89. Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Aberg C. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc. 2013;135:1438–44.

    Article  CAS  PubMed  Google Scholar 

  90. Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8:543–57.

    Article  CAS  PubMed  Google Scholar 

  91. He B, Yuan L, Dai W, Gao W, Zhang H, Wang X, et al. Dynamic bio-adhesion of polymer nanoparticles on MDCK epithelial cells and its impact on bio-membranes, endocytosis and paracytosis. Nanoscale Royal Society of Chemistry. 2016;8:6129–45.

    CAS  Google Scholar 

  92. Boddupalli BM, Mohammed ZNK, Nath RA, Banji D. Mucoadhesive drug delivery system: an overview. J Adv Pharm Technol Res. Medknow Publications; 2010;1:381–7.

  93. Greaves JL, Wilson CG. Treatment of diseases of the eye with mucoadhesive delivery systems. Adv. Drug Deliv. Rev. Elsevier; 1993. p. 349–83.

  94. Lehr CM, Bouwstra JA, Schacht EH, Junginger HE. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm Elsevier. 1992;78:43–8.

    Article  CAS  Google Scholar 

  95. Park H, Robinson JR. Mechanisms of mucoadhesion of poly(acrylic acid) hydrogels. Pharm Res An Off J Am Assoc Pharm Sci. Pharm Res; 1987;4:457–64.

  96. Serra L, Doménech J, Peppas NA. Design of poly(ethylene glycol)-tethered copolymers as novel mucoadhesive drug delivery systems. Eur J Pharm Biopharm. 2006;63:11–8.

    Article  CAS  PubMed  Google Scholar 

  97. Janagam DR, Wu L, Lowe TL. Nanoparticles for drug delivery to the anterior segment of the eye. Adv. Drug Deliv. Rev. Elsevier B.V.; 2017. p. 31–64.

Download references

Acknowledgements

The authors would like to acknowledge the Central Laboratory Unit, Qatar University, for providing resources for transmission electron microscopy studies, NMR, FTIR, and DSC studies.

Funding

The authors received financial support from the project Drug delivery systems for improved ophthalmic delivery, QUST-1-CPH2020-8, Qatar University.

Author information

Authors and Affiliations

Authors

Contributions

SAK: Investigation; IMZ: Investigation; FG: Investigation and formal analysis; NG: Formal analysis, writing—original draft, review and editing, and visualization; PM: Formal analysis, writing—original draft; MGD: Writing—review and editing; KG: Conceptualization and methodology, formal analysis, writing—original draft, visualization, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Katerina Goracinova.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 266 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koummich, S.A., Zoukh, I.M., Gorachinov, F. et al. Design of ophthalmic micelles loaded with diclofenac sodium: effect of chitosan and temperature on the block-copolymer micellization behaviour. Drug Deliv. and Transl. Res. 12, 1488–1507 (2022). https://doi.org/10.1007/s13346-021-01030-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-01030-4

Keywords

Navigation