Skip to main content

Advertisement

Log in

Drug delivery—the increasing momentum

  • Inspirational Note
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Drug delivery and the drug modalities in the discovery and development pipelines of the Pharmaceutical and Biotechnology Industries have changed significantly over the last 25 years. Drug delivery was traditionally used primarily to enhance oral exposure or prolong exposure of small molecules and the early peptide drugs. The world is rapidly changing; the drug modalities are diversifying, and drug delivery scientists must play a more prominent role and are core to the genesis of innovative medicines of the future. This note shows where delivery science can play a critical role in treating diseases of the future. It outlines some of the skills, capabilities and behaviours that will be critical for the success of the next generation of medicines and illustrates where drug delivery science will be required at the inception of projects in discovery as well as in development where until recently this has predominantly been the case. Finally, it asks whether we are ready for this evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012;11:191–200.

    Article  CAS  Google Scholar 

  2. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3:711–5.

    Article  CAS  Google Scholar 

  3. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20.

    Article  CAS  Google Scholar 

  4. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol. 2010;62:1607–21.

    Article  CAS  Google Scholar 

  5. Butler JM, Dressman JB. The developability classification system: application of biopharmaceutics concepts to formulation development. J Pharm Sci. 2010;99:4940–54.

    Article  CAS  Google Scholar 

  6. Buckley ST, Frank KJ, Fricker G, Brandl M. Biopharmaceutical classification of poorly soluble drugs with respect to “enabling formulations”. Eur J Pharm Sci. 2013;50:8–16.

    Article  CAS  Google Scholar 

  7. Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 2006;29:278–87.

    Article  CAS  Google Scholar 

  8. Zhou D, Schmitt EA, Law D, Brackemeyer PJ, Zhang GGZ. Assessing physical stability risk using the amorphous classification system (ACS) based on simple thermal analysis. Mol Pharm. 2019;16:2742–54.

    Article  CAS  Google Scholar 

  9. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.

    Article  CAS  Google Scholar 

  10. Sedo K. Drug Development and Delivery. 2020;20:18–23.

    Google Scholar 

  11. Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5:442–53.

    Article  Google Scholar 

  12. Morgan P, Brown DG, Lennard S, Anderton MJ, Barrett JC, Eriksson U, et al. Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nat Rev Drug Discov. 2018;17:167–81.

    Article  CAS  Google Scholar 

  13. Venditto VJ, Szoka FC Jr. Cancer nanomedicines: so many papers and so few drugs! Adv Drug Deliv Rev. 2013;65:80–8.

    Article  CAS  Google Scholar 

  14. Park K. The beginning of the end of the nanomedicine hype. J Control Release. 2019;305:221–2.

    Article  CAS  Google Scholar 

  15. Germaina M CF, Metcalfe S, Tosid G, Spring K, Åslund A, Pottier A, et al. Delivering the power of nanomedicine to patients today. J Control Release. 2020.

  16. Martins JP, das Neves J, de la Fuente M, Celia C, Florindo H, Gunday-Tureli N, et al. The solid progress of nanomedicine. Drug Deliv Transl Res. 2020;10:726–9.

    Article  Google Scholar 

  17. Lammers T, Kiessling F, Ashford M, Hennink W, Crommelin D, Storm G. Cancer nanomedicine: is targeting our target? Nat rev mater. 2016;1.

  18. Ashford M, Balachander SB, Graham, L, Grant I, Gibbons FD, Hill KJ, Harmer AJ, et al. Design and optimisation of a dendrimer-conjugated dual Bcl-2/Bcl-xL inhibitor, AZD0466, with improved therapeutic index. Cancer Research, 2020; 80:1718.

  19. Ashton S, Song YH, Nolan J, Cadogan E, Murray J, Odedra R, et al. Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo. Sci Transl Med. 2016;8:325ra317.

    Article  Google Scholar 

  20. Zhao P, Zhang Y, Lia W, Jeanty C, Xiang G, Dong Y. Recent advances of antibody drug conjugates for clinical applications. Acta Pharm Sin B. 2020.

  21. Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev. 2017;108:25–38.

    Article  CAS  Google Scholar 

  22. L. Jarvis, A quest to drug the undruggable, chemical and engineering news, 96 (2018).

    Google Scholar 

  23. Liu P, Wang Y, Li X. Targeting the untargetable KRAS in cancer therapy. Acta Pharm Sin B. 2019;9:871–9.

    Article  Google Scholar 

  24. Van Hoecke L, Roose K. How mRNA therapeutics are entering the monoclonal antibody field. J Transl Med. 2019;17:54.

    Article  Google Scholar 

  25. Sun N, Ning B, Hansson KM, Bruce AC, Seaman SA, Zhang C, et al. Modified VEGF-A mRNA induces sustained multifaceted microvascular response and accelerates diabetic wound healing. Sci Rep. 2018;8:17509.

    Article  Google Scholar 

  26. Krueger TEG, Thorek DLJ, Denmeade SR, Isaacs JT, Brennen WN. Concise review: mesenchymal stem cell-based drug delivery: the good, the bad, the ugly, and the promise. Stem Cells Transl Med. 2018;7:651–63.

    Article  Google Scholar 

  27. Wang X, Rivera-Bolanos N, Jiang B, Ameer GA. Advanced functional biomaterials for stem cell delivery in regenerative engineering and medicine, advanced functional materials. 2019;29.

  28. Valeur E, Gueret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, et al. New modalities for challenging targets in drug discovery. Angew Chem Int Ed Engl. 2017;56:10294–323.

    Article  CAS  Google Scholar 

  29. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011;6:815–23.

    Article  CAS  Google Scholar 

  30. Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev. 2019;143:68–96.

    Article  CAS  Google Scholar 

  31. Gilleron J, Querbes W, Zeigerer A, Borodovsky A, Marsico G, Schubert U, et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. 2013;31:638–46.

    Article  CAS  Google Scholar 

  32. Akinc A, Maier MA, Manoharan M, Fitzgerald K, Jayaraman M, Barros S, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol. 2019;14:1084–7.

    Article  CAS  Google Scholar 

  33. Yanez Arteta M, Kjellman T, Bartesaghi S, Wallin S, Wu X, Kvist AJ, et al. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Proc Natl Acad Sci U S A. 2018;115:E3351–60.

    Article  Google Scholar 

  34. Dahlman JE, Kauffman KJ, Xing Y, Shaw TE, Mir FF, Dlott CC, et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc Natl Acad Sci U S A. 2017;114:2060–5.

    Article  CAS  Google Scholar 

  35. Clogston JD, Hackley VA, Prina-Mello A, Puri S, Sonzini S, Soo PL. Sizing up the next generation of nanomedicines. Pharm Res. 2019;37:6.

    Article  Google Scholar 

  36. M. Ashford, Development and Commercialization of Nanocarrier-Based Drug Products, in: J.C.D.P.A.O.P.A.K.D.P.M.V.d. Voorde (Ed.) Pharmaceutical nanotechnology: innovation and production: innovation and production, Wiley-VCH Verlag GmbH & Co. KGaA2016.

Download references

Acknowledgements

I would like to thank Dr John Fell for his support and discussions to help the genesis and development of this article, Dr Paul Gellert for reading and commenting on an early draft and to Emily Fell for her expert assistance with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Ashford.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashford, M. Drug delivery—the increasing momentum. Drug Deliv. and Transl. Res. 10, 1888–1894 (2020). https://doi.org/10.1007/s13346-020-00858-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00858-6

Keywords

Navigation