Skip to main content

Advertisement

Log in

An injectable microparticle formulation for the sustained release of the specific MEK inhibitor PD98059: in vitro evaluation and pharmacokinetics

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

PD98059 is a reversible MEK inhibitor that we are investigating as a potential treatment for neurochemical changes in the brain that drive neurohumoral excitation in heart failure. In a rat model that closely resembles human heart failure, we found that central administration of PD98059 inhibits phosphorylation of ERK1/2 in the paraventricular nucleus of the hypothalamus, ultimately reducing sympathetic excitation which is a major contributor to clinical deterioration. Studies revealed that the pharmacokinetics and biodistribution of PD98059 match a two-compartment model, with drug found in brain as well as other body tissues, but with a short elimination half-life in plasma (approximately 73 min) that would severely limit its potential clinical usefulness in heart failure. To increase its availability to tissues, we prepared a sustained release PD98059-loaded PLGA microparticle formulation, using an emulsion solvent evaporation technique. The average particle size, yield percent, and encapsulation percent were found to be 16.73 μm, 76.6%, and 43%, respectively. In vitro drug release occurred over 4 weeks, with no noticeable burst release. Following subcutaneous injection of the microparticles in rats, steady plasma levels of PD98059 were detected by HPLC for up to 2 weeks. Furthermore, plasma and brain levels of PD98059 in rats with heart failure were detectable by LC/MS, despite expected erratic absorption. These findings suggest that PD98059-loaded microparticles hold promise as a novel therapeutic intervention countering sympathetic excitation in heart failure, and perhaps in other disease processes, including cancers, in which activated MAPK signaling is a significant contributing factor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410(6824):37–40. https://doi.org/10.1038/35065000.

    Article  CAS  PubMed  Google Scholar 

  2. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001;22(2):153–83. https://doi.org/10.1210/edrv.22.2.0428.

    Article  CAS  PubMed  Google Scholar 

  3. Cseh B, Doma E, Baccarini M. "RAF" neighborhood: protein-protein interaction in the Raf/Mek/Erk pathway. FEBS Lett. 2014;588(15):2398–406. https://doi.org/10.1016/j.febslet.2014.06.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu PK, Park JI. MEK1/2 inhibitors: molecular activity and resistance mechanisms. Semin Oncol. 2015;42(6):849–62. https://doi.org/10.1053/j.seminoncol.2015.09.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blaukat A, Barac A, Cross MJ, Offermanns S, Dikic I. G protein-coupled receptor-mediated mitogen-activated protein kinase activation through cooperation of Galpha(q) and Galpha(i) signals. Mol Cell Biol. 2000;20(18):6837–48. https://doi.org/10.1128/mcb.20.18.6837-6848.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Neuzillet C, Tijeras-Raballand A, de Mestier L, Cros J, Faivre S, Raymond E. MEK in cancer and cancer therapy. Pharmacol Ther. 2014;141(2):160–71. https://doi.org/10.1016/j.pharmthera.2013.10.001.

    Article  CAS  PubMed  Google Scholar 

  7. Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL, et al. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia. 2003;17(7):1263–93. https://doi.org/10.1038/sj.leu.2402945.

    Article  CAS  PubMed  Google Scholar 

  8. Li L, Zhao GD, Shi Z, Qi LL, Zhou LY, Fu ZX. The Ras/Raf/MEK/ERK signaling pathway and its role in the occurrence and development of HCC. Oncol Lett. 2016;12(5):3045–50. https://doi.org/10.3892/ol.2016.5110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Costigan DC, Dong F. The extended spectrum of RAS-MAPK pathway mutations in colorectal cancer. Genes, chromosomes & cancer. 2019. https://doi.org/10.1002/gcc.22813.

  10. Li S, Balmain A, Counter CM. A model for RAS mutation patterns in cancers: finding the sweet spot. Nat Rev Cancer. 2018;18(12):767–77. https://doi.org/10.1038/s41568-018-0076-6.

    Article  CAS  PubMed  Google Scholar 

  11. Savoia P, Fava P, Casoni F, Cremona O. Targeting the ERK signaling pathway in melanoma. Int J Mol Sci. 2019;20(6). https://doi.org/10.3390/ijms20061483.

  12. Wang AX, Qi XY. Targeting RAS/RAF/MEK/ERK signaling in metastatic melanoma. IUBMB Life. 2013;65(9):748–58. https://doi.org/10.1002/iub.1193.

    Article  CAS  PubMed  Google Scholar 

  13. Basu S, Harfouche R, Soni S, Chimote G, Mashelkar RA, Sengupta S. Nanoparticle-mediated targeting of MAPK signaling predisposes tumor to chemotherapy. Proc Natl Acad Sci U S A. 2009;106(19):7957–61. https://doi.org/10.1073/pnas.0902857106.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cheng Y, Tian H. Current development status of MEK inhibitors. Molecules. 2017;22(10). https://doi.org/10.3390/molecules22101551.

  15. Miao L, Tian H. Development of ERK1/2 inhibitors as a therapeutic strategy for tumour with MAPK upstream target mutations. J Drug Target. 2019;28:1–12. https://doi.org/10.1080/1061186X.2019.1648477.

    Article  Google Scholar 

  16. Broman KK, Dossett LA, Sun J, Eroglu Z, Zager JS. Update on BRAF and MEK inhibition for treatment of melanoma in metastatic, unresectable, and adjuvant settings. Expert Opin Drug Saf. 2019;18(5):381–92. https://doi.org/10.1080/14740338.2019.1607289.

    Article  PubMed  Google Scholar 

  17. Li S, Liu S, Deng J, Akbay EA, Hai J, Ambrogio C, et al. Assessing therapeutic efficacy of MEK inhibition in a KRAS(G12C)-driven mouse model of lung cancer. Clin Cancer Res. 2018;24(19):4854–64. https://doi.org/10.1158/1078-0432.CCR-17-3438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gilmartin AG, Bleam MR, Groy A, Moss KG, Minthorn EA, Kulkarni SG, et al. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin Cancer Res. 2011;17(5):989–1000. https://doi.org/10.1158/1078-0432.CCR-10-2200.

    Article  CAS  PubMed  Google Scholar 

  19. Wei SG, Yu Y, Weiss RM, Felder RB. Inhibition of brain mitogen-activated protein kinase signaling reduces central endoplasmic reticulum stress and inflammation and sympathetic nerve activity in heart failure rats. Hypertension. 2016;67(1):229–36. https://doi.org/10.1161/HYPERTENSIONAHA.115.06329.

    Article  CAS  PubMed  Google Scholar 

  20. Wei SG, Yu Y, Weiss RM, Felder RB. Endoplasmic reticulum stress increases brain MAPK signaling, inflammation and renin-angiotensin system activity and sympathetic nerve activity in heart failure. Am J Physiol Heart Circ Physiol. 2016;311(4):H871–H80. https://doi.org/10.1152/ajpheart.00362.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wei SG, Yu Y, Zhang ZH, Felder RB. Angiotensin II upregulates hypothalamic AT1 receptor expression in rats via the mitogen-activated protein kinase pathway. Am J Physiol Heart Circ Physiol. 2009;296(5):H1425–33. https://doi.org/10.1152/ajpheart.00942.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wei SG, Yu Y, Zhang ZH, Weiss RM, Felder RB. Mitogen-activated protein kinases mediate upregulation of hypothalamic angiotensin II type 1 receptors in heart failure rats. Hypertension. 2008;52(4):679–86. https://doi.org/10.1161/HYPERTENSIONAHA.108.113639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wei SG, Yu Y, Zhang ZH, Weiss RM, Felder RB. Angiotensin II-triggered p44/42 mitogen-activated protein kinase mediates sympathetic excitation in heart failure rats. Hypertension. 2008;52(2):342–50. https://doi.org/10.1161/HYPERTENSIONAHA.108.110445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu Y, Wei SG, Zhang ZH, Weiss RM, Felder RB. ERK1/2 MAPK signaling in hypothalamic paraventricular nucleus contributes to sympathetic excitation in rats with heart failure after myocardial infarction. Am J Physiol Heart Circ Physiol. 2016;310(6):H732–9. https://doi.org/10.1152/ajpheart.00703.2015.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yu Y, Xue BJ, Zhang ZH, Wei SG, Beltz TG, Guo F, et al. Early interference with p44/42 mitogen-activated protein kinase signaling in hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension. Hypertension. 2013;61(4):842–9. https://doi.org/10.1161/HYPERTENSIONAHA.111.00080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang ZH, Yu Y, Wei SG, Felder RB. Aldosterone-induced brain MAPK signaling and sympathetic excitation are angiotensin II type-1 receptor dependent. Am J Physiol Heart Circ Physiol. 2012;302(3):H742–51. https://doi.org/10.1152/ajpheart.00856.2011.

    Article  CAS  PubMed  Google Scholar 

  27. Felder RB, Yu Y, Zhang ZH, Wei SG. Pharmacological treatment for heart failure: a view from the brain. Clin Pharmacol Ther. 2009;86(2):216–20. https://doi.org/10.1038/clpt.2009.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kang YM, Zhang ZH, Xue B, Weiss RM, Felder RB. Inhibition of brain proinflammatory cytokine synthesis reduces hypothalamic excitation in rats with ischemia-induced heart failure. Am J Physiol Heart Circ Physiol. 2008;295(1):H227–36. https://doi.org/10.1152/ajpheart.01157.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wei SG, Zhang ZH, Yu Y, Weiss RM, Felder RB. Central actions of the chemokine stromal cell-derived factor 1 contribute to neurohumoral excitation in heart failure rats. Hypertension. 2012;59(5):991–8. https://doi.org/10.1161/HYPERTENSIONAHA.111.188086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Khaled KA, Sarhan HA, Ibrahim MA, Ali AH, Naguib YW. Prednisolone-loaded PLGA Microspheres. In vitro characterization and in vivo application in adjuvant-induced arthritis in mice. AAPS PharmSciTech 2010;11(2):859–869. doi:https://doi.org/10.1208/s12249-010-9445-5.

  31. Geary SM, Hu Q, Joshi VB, Bowden NB, Salem AK. Diaminosulfide based polymer microparticles as cancer vaccine delivery systems. J Control Release. 2015;220(Pt B):682–90. https://doi.org/10.1016/j.jconrel.2015.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Intra J, Salem AK. Fabrication, characterization and in vitro evaluation of poly(D,L-lactide-co-glycolide) microparticles loaded with polyamidoamine-plasmid DNA dendriplexes for applications in nonviral gene delivery. J Pharm Sci. 2010;99(1):368–84. https://doi.org/10.1002/jps.21840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lew B, Kim IY, Choi H, Kim KK. Sustained exenatide delivery via intracapsular microspheres for improved survival and function of microencapsulated porcine islets. Drug Deliv Transl Res. 2018;8(3):857–62. https://doi.org/10.1007/s13346-018-0484-x.

    Article  CAS  PubMed  Google Scholar 

  34. Ansary RH, Rahman MM, Awang MB, Katas H, Hadi H, Doolaanea AA. Preparation, characterization, and in vitro release studies of insulin-loaded double-walled poly(lactide-co-glycolide) microspheres. Drug Deliv Transl Res. 2016;6(3):308–18. https://doi.org/10.1007/s13346-016-0278-y.

    Article  CAS  PubMed  Google Scholar 

  35. Andhariya JV, Shen J, Choi S, Wang Y, Zou Y, Burgess DJ. Development of in vitro-in vivo correlation of parenteral naltrexone loaded polymeric microspheres. J Control Release. 2017;255:27–35. https://doi.org/10.1016/j.jconrel.2017.03.396.

    Article  CAS  PubMed  Google Scholar 

  36. Naguib YW, Lansakara PD, Lashinger LM, Rodriguez BL, Valdes S, Niu M, et al. Synthesis, characterization, and in vitro and in vivo evaluations of 4-(N)-Docosahexaenoyl 2′, 2′-Difluorodeoxycytidine with potent and broad-spectrum antitumor activity. Neoplasia. 2016;18(1):33–48. https://doi.org/10.1016/j.neo.2015.11.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang Y, Huo M, Zhou J, Xie S. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft excel. Comput Methods Prog Biomed. 2010;99(3):306–14. https://doi.org/10.1016/j.cmpb.2010.01.007.

    Article  Google Scholar 

  38. Yao J, Qian C, Shu T, Zhang X, Zhao Z, Liang Y. Combination treatment of PD98059 and DAPT in gastric cancer through induction of apoptosis and downregulation of WNT/beta-catenin. Cancer Biol Ther. 2013;14(9):833–9. https://doi.org/10.4161/cbt.25332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Awasthi N, Monahan S, Stefaniak A, Schwarz MA, Schwarz RE. Inhibition of the MEK/ERK pathway augments nab-paclitaxel-based chemotherapy effects in preclinical models of pancreatic cancer. Oncotarget. 2018;9(4):5274–86. https://doi.org/10.18632/oncotarget.23684.

    Article  PubMed  Google Scholar 

  40. Cilurzo F, Selmin F, Minghetti P, Montanari L. Design of methylprednisolone biodegradable microspheres intended for intra-articular administration. AAPS PharmSciTech. 2008;9(4):1136–42. https://doi.org/10.1208/s12249-008-9158-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang H, Gao S. Temozolomide/PLGA microparticles and antitumor activity against glioma C6 cancer cells in vitro. Int J Pharm. 2007;329(1–2):122–8. https://doi.org/10.1016/j.ijpharm.2006.08.027.

    Article  CAS  PubMed  Google Scholar 

  42. Ogawa R, Stachnik JM, Echizen H. Clinical pharmacokinetics of drugs in patients with heart failure: an update (part 2, drugs administered orally). Clin Pharmacokinet. 2014;53(12):1083–114. https://doi.org/10.1007/s40262-014-0189-3.

    Article  CAS  PubMed  Google Scholar 

  43. Shammas FV, Dickstein K. Clinical pharmacokinetics in heart failure. An updated review. Clin Pharmacokinet. 1988;15(2):94–113. https://doi.org/10.2165/00003088-198815020-00002.

    Article  CAS  PubMed  Google Scholar 

  44. Nies AS. Clinical pharmacokinetics in congestive heart failure. In: Hosenpud JD, Greenberg BH, editors. Congestive heart failure: pathophysiology, diagnosis, and comprehensive approach to management. New York: Springer New York; 1994. p. 323–40.

    Chapter  Google Scholar 

  45. Ariza-Andraca CR, Altamirano-Bustamante E, Frati-Munari AC, Altamirano-Bustamante P, Graef-Sanchez A. Delayed insulin absorption due to subcutaneous edema. Arch Invest Med. 1991;22(2):229–33.

    CAS  Google Scholar 

  46. Navas JP, Martinez-Maldonado M. Pathophysiology of edema in congestive heart failure. Heart Dis Stroke. 1993;2(4):325–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Graphical abstract was designed using mindthegraph.com.

Funding

This work was supported by the National Institute of Health grants R01-HL-136149 to R.B.F. and S10-OD-019941 to R.M.W., and by the Lyle and Sharon Bighley Professorship (A.K.S.). B.E.G. was supported by the National GEM Consortium, the Alfred P. Sloan Minority Ph.D. Scholarship and the University of Iowa Graduate College Dean’s Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliasger K. Salem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Disclaimer

The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naguib, Y.W., Givens, B.E., Ho, G. et al. An injectable microparticle formulation for the sustained release of the specific MEK inhibitor PD98059: in vitro evaluation and pharmacokinetics. Drug Deliv. and Transl. Res. 11, 182–191 (2021). https://doi.org/10.1007/s13346-020-00758-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00758-9

Keywords

Profiles

  1. Brittany E. Givens