Skip to main content
Log in

Comparative study of cilnidipine loaded PLGA nanoparticles: process optimization by DoE, physico-chemical characterization and in vivo evaluation

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Cilnidipine (CND) is known to have low oral bioavailability due to its poor aqueous solubility, low dissolution rate, and high gut wall metabolism. In the present study, CND-loaded PLGA nanoparticles (CND-PLGA-NPs) were prepared with two different grades of PLGA (50:50 and 75:25) by design of experiment. Critical factors affecting particle size and entrapment efficiency (EE%) were assessed by mixed design approach, comprising of Plackett-Burman design followed by rotatable central composite design. Particle size, PDI, zeta potential, and EE% of optimized formulations of CND-PLGA(50:50)-NPs and CND-PLGA(75:25)-NPs were 211.6 ± 1.8 nm, 0.21 ± 0.05, − 15.1 ± 1.6 mV, and 85.9 ± 1.5% and 243.5 ± 2.4 nm, 0.23 ± 0.06, −19.6 ± 1.3 mV, and 92.0 ± 1.2% respectively. No significant changes were observed in physical stability of NPs when stored at 25 °C/60% RH over a period of 3 months. Pharmacokinetic studies revealed that Fabs of CND-PLGA(50:50)-NPs (1.15) and CND-PLGA(75:25)-NPs (2.23) were significantly higher than the free CND (0.26). The Cmax and AUC0-∞ of CND-PLGA(50:50)-NPs (787.42 ± 27.38 ng/mL and 9339.37 ± 252.38 ng/ml × h) and CND-PLGA(75:25)-NPs (803.49 ± 19.63 ng/mL and 18,153.34 ± 543.05 ng/ml × h) were significantly higher (p ˂ 0.0001) compared with free CND (367.69 ± 47.22 ng/mL and 2107.95 ± 136.40 ng/ml × h). MRTOral of CND-PLGA(50:50)-NPs (33.36 ± 0.48 h) and CND-PLGA(75:25)-NPs (48.37 ± 0.61 h) were significantly higher (p ˂ 0.0001) compared with free CND (4.69 ± 0.58 h). CND-PLGA-NPs can provide higher and sustained plasma drug levels of CND and be effective in antihypertensive therapy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kjeldsen SE. Hypertension and cardiovascular risk: general aspects. Pharmacol Res. 2018;129:95–99.

  2. Garfinkle MA. Salt and essential hypertension: pathophysiology and implications for treatment. J Am Soc Hypertens. 2017;11(6):385–91.

    Article  CAS  Google Scholar 

  3. Schmieder RE, Volpe M, Waeber B, Ruilope LM. A guide for easy-and difficult-to-treat hypertension. Int J Cardiol. 2014;172(1):17–22.

    Article  Google Scholar 

  4. Adake P, Somashekar H, Rafeeq PM, Umar D, Basheer B, Baroudi K. Comparison of amlodipine with cilnidipine on antihypertensive efficacy and incidence of pedal edema in mild to moderate hypertensive individuals: a prospective study. J Adv Pharm Technol Res. 2015;6(2):81–5.

    Article  CAS  Google Scholar 

  5. Alam T, Khan S, Gaba B, Haider MF, Baboota S, Ali J. Nanocarriers as treatment modalities for hypertension. Drug Deliv. 2017;24(1):358–69.

    Article  CAS  Google Scholar 

  6. Shailender J, Ravi PR, Reddy Sirukuri M, Dalvi A, Keerthi PO. Chitosan nanoparticles for the oral delivery of tenofovir disoproxil fumarate: formulation optimization, characterization and ex vivo and in vivo evaluation for uptake mechanism in rats. Drug Dev Ind Pharm. 2018;44(7):1109–19.

    Article  CAS  Google Scholar 

  7. Shailender J, Ravi PR, Saha P, Dalvi A, Myneni S. Tenofovir disoproxil fumarate loaded PLGA nanoparticles for enhanced oral absorption: effect of experimental variables and in vitro, ex vivo and in vivo evaluation. Colloids Surf B: Biointerfaces. 2017;158:610–9.

    Article  CAS  Google Scholar 

  8. Ravi PR, Vats R. Comparative pharmacokinetic evaluation of lopinavir and lopinavir-loaded solid lipid nanoparticles in hepatic impaired rat model. J Pharm Pharmacol. 2017;69(7):823–33.

    Article  CAS  Google Scholar 

  9. Ravi PR, Vats R, Dalal V, Gadekar N. Design, optimization and evaluation of poly-ɛ-caprolactone (PCL) based polymeric nanoparticles for oral delivery of lopinavir. Drug Dev Ind Pharm. 2015;41(1):131–40.

    Article  CAS  Google Scholar 

  10. Ravi PR, Vats R, Balija J, Adapa SPN, Aditya N. Modified pullulan nanoparticles for oral delivery of lopinavir: formulation and pharmacokinetic evaluation. Carbohydr Polym. 2014;110:320–8.

    Article  CAS  Google Scholar 

  11. Aditya N, Ravi PR, Avula USR, Vats R. Poly (ε-caprolactone) nanocapsules for oral delivery of raloxifene: process optimization by hybrid design approach, in vitro and in vivo evaluation. J Microencapsul. 2014;31(5):508–18.

    Article  CAS  Google Scholar 

  12. Tsioufis C, Thomopoulos C. Combination drug treatment in hypertension. Pharmacol Res. 2017;125:266–271.

  13. Chandra KS, Ramesh G. The fourth-generation calcium channel blocker: cilnidipine. Indian Heart J. 2013;65(6):691–5.

    Article  Google Scholar 

  14. Minami J, Kawano Y, Makino Y, Matsuoka H, Takishita S. Effects of cilnidipine, a novel dihydropyridine calcium antagonist, on autonomic function, ambulatory blood pressure and heart rate in patients with essential hypertension. Br J Clin Pharmacol. 2000;50(6):615–20.

    Article  CAS  Google Scholar 

  15. Uesawa Y, Mohri K. Relationship between lipophilicities of 1, 4-dihydropyridine derivatives and pharmacokinetic interaction strengths with grapefruit juice. Yakugaku Zasshi. 2008;128(1):117–22.

    Article  CAS  Google Scholar 

  16. Chen C, Xie X, Li Y, Zhou C, Song Y, Yan Z, et al. Influence of different polymers on crystallization tendency and dissolution behavior of cilnidipine in solid dispersions. Drug Dev Ind Pharm. 2014;40(4):441–51.

    Article  CAS  Google Scholar 

  17. Tandel H, Raval K, Nayani A, Upadhay M. Preparation and evaluation of cilnidipine microemulsion. J Pharm Bioallied Sci. 2012;4(Suppl 1):S114.

    Article  Google Scholar 

  18. Hu L, Song W, Niu F, Jiao K, Jia Z. Preparation, characterization and tableting of cilnidipine solid dispersions. Pak J Pharm Sci. 2013;26(3):629–36.

  19. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–97.

    Article  CAS  Google Scholar 

  20. Jana U, Mohanty AK, Pal SL, Manna PK, Mohanta GP. Felodipine loaded PLGA nanoparticles: preparation, physicochemical characterization and in vivo toxicity study. Nano Convergence. 2014;1(1):31.

    Article  Google Scholar 

  21. Gutiérrez-Valenzuela CA, Esquivel R, Guerrero-Germán P, Zavala-Rivera P, Rodríguez-Figueroa JC, Guzmán-Z R, et al. Evaluation of a combined emulsion process to encapsulate methylene blue into PLGA nanoparticles. RSC Adv. 2018;8(1):414–22.

    Article  Google Scholar 

  22. Hussein AS, Abdullah N, Fakru'l-razi A. Optimizing the process parameters for encapsulation of linamarin into PLGA nanoparticles using double emulsion solvent evaporation technique. Adv Polym Technol. 2013;32(S1):E486–504.

    Article  CAS  Google Scholar 

  23. Bilati U, Allémann E, Doelker E. Nanoprecipitation versus emulsion-based techniques for the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues. AAPS PharmSciTech. 2005;6(4):E594–604.

    Article  Google Scholar 

  24. Liu J, Qiu Z, Wang S, Zhou L, Zhang S. A modified double-emulsion method for the preparation of daunorubicin-loaded polymeric nanoparticle with enhanced in vitro anti-tumor activity. Biomed Mater. 2010;5(6):065002.

    Article  Google Scholar 

  25. Kalvanagh PA, Ebtekara M, Kokhaei P, Soleimanjahi H. Preparation and characterization of PLGA nanoparticles containing plasmid DNA encoding human IFN-lambda-1/IL-29. Iranian J Pharm Res. 2019;18(1):156.

    CAS  Google Scholar 

  26. Matsuzawa Y, Oikawa I, Gonsho A, Yamamoto K, Ozaki M. Absorption, distribution and excretion of ( )-2-methoxyethyl 3-phenyl-2 (E)-propenyl 1, 4-dihydro-2, 6-dimethyl-4-(3-nitrophenyl)-3, 5-pyridinedicarboxylate (FRC-8653) after single oral administration to dogs. Jpn Pharmacol Ther. 1992;20:111.

    Google Scholar 

  27. Zweers ML, Grijpma DW, Engbers GH, Feijen J. The preparation of monodisperse biodegradable polyester nanoparticles with a controlled size. J Biomed Mater Res B Appl Biomater. 2003;66(2):559–66.

    Article  Google Scholar 

  28. Yoo HS, Oh JE, Lee KH, Park TG. Biodegradable nanoparticles containing doxorubicin-PLGA conjugate for sustained release. Pharm Res. 1999;16(7):1114–8.

    Article  CAS  Google Scholar 

  29. Thakkar HP, Desai JL, Parmar MP. Application of Box-Behnken design for optimization of formulation parameters for nanostructured lipid carriers of candesartan cilexetil. Asian J Pharm. 2014;8:81–89.

  30. Rahman Z, Zidan AS, Habib MJ, Khan MA. Understanding the quality of protein loaded PLGA nanoparticles variability by Plackett–Burman design. Int J Pharm. 2010;389(1–2):186–94.

    Article  CAS  Google Scholar 

  31. Yang Y-Y, Chung T-S, Ng NP. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials. 2001;22(3):231–41.

    Article  CAS  Google Scholar 

  32. Sharma N, Madan P, Lin S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: a co-surfactant study. Asian J Pharm Sci. 2016;11(3):404–16.

    Article  Google Scholar 

  33. Averineni RK, Shavi GV, Gurram AK, Deshpande PB, Arumugam K, Maliyakkal N, et al. PLGA 50: 50 nanoparticles of paclitaxel: development, in vitro anti-tumor activity in BT-549 cells and in vivo evaluation. Bull Mater Sci. 2012;35(3):319–26.

    Article  CAS  Google Scholar 

  34. Seju U, Kumar A, Sawant K. Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. Acta Biomater. 2011;7(12):4169–76.

    Article  CAS  Google Scholar 

  35. Musumeci T, Ventura CA, Giannone I, Ruozi B, Montenegro L, Pignatello R, et al. PLA/PLGA nanoparticles for sustained release of docetaxel. Int J Pharm. 2006;325(1–2):172–9.

    Article  CAS  Google Scholar 

  36. Esmaeili F, Ghahremani MH, Esmaeili B, Khoshayand MR, Atyabi F, Dinarvand R. PLGA nanoparticles of different surface properties: preparation and evaluation of their body distribution. Int J Pharm. 2008;349(1–2):249–55.

    Article  CAS  Google Scholar 

  37. Hines DJ, Kaplan DL. Poly (lactic-co-glycolic) acid− controlled-release systems: experimental and modeling insights. Crit Rev Ther Drug Carrier Syst. 2013;30(3):257–76.

Download references

Acknowledgments

All the authors are thankful to the Department of Science and Technology for providing financial assistance.

Funding

This work was financially supported by the Department of Science and Technology (DST-INSPIRE-IF150457).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Punna Rao Ravi.

Ethics declarations

All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 486 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diwan, R., Khan, S. & Ravi, P.R. Comparative study of cilnidipine loaded PLGA nanoparticles: process optimization by DoE, physico-chemical characterization and in vivo evaluation. Drug Deliv. and Transl. Res. 10, 1442–1458 (2020). https://doi.org/10.1007/s13346-020-00732-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00732-5

Keywords

Navigation