Skip to main content

Advertisement

Log in

The fourth annual BRDS on genome editing and silencing for precision medicines

  • Technical Report
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Precision medicine is promising for treating human diseases, as it focuses on tailoring drugs to a patient’s genes, environment, and lifestyle. The need for personalized medicines has opened the doors for turning nucleic acids into therapeutics. Although gene therapy has the potential to treat and cure genetic and acquired diseases, it needs to overcome certain obstacles before creating the overall prescription drugs. Recent advancement in the life science has helped to understand the effective manipulation and delivery of genome-engineering tools better. The use of sequence-specific nucleases allows genetic changes in human cells to be easily made with higher efficiency and precision than before. Nanotechnology has made rapid advancement in the field of drug delivery, but the delivery of nucleic acids presents unique challenges. Also, designing efficient and short time-consuming genome-editing tools with negligible off-target effects are in high demand for precision medicine. In the fourth annual Biopharmaceutical Research and Development Symposium (BRDS) held at the University of Nebraska Medical Center (UNMC) on September 7–8, 2017, we covered different facets of developing tools for precision medicine for therapeutic and diagnosis of genetic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Liu ET, Johnston PG. Personalized medicine: does the molecular suit fit? Oncologist. 2013;18(6):653–4. https://doi.org/10.1634/theoncologist.2013-0191.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wen D, Danquah M, Chaudhary AK, Mahato RI. Small molecules targeting microRNA for cancer therapy: promises and obstacles. J Control Release. 2015;219:237–47. https://doi.org/10.1016/j.jconrel.2015.08.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer. 2011;11(1):59–67. https://doi.org/10.1038/nrc2966.

    Article  CAS  PubMed  Google Scholar 

  4. Phillips AJ. The challenge of gene therapy and DNA delivery. J Pharm Pharmacol. 2001;53(9):1169–74. https://doi.org/10.1211/0022357011776603.

    Article  CAS  PubMed  Google Scholar 

  5. Kaufmann KB, Buning H, Galy A, Schambach A, Grez M. Gene therapy on the move. EMBO Mol Med. 2013;5(11):1642–61. https://doi.org/10.1002/emmm.201202287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chaudhary AK, Mahato RI. The third annual BRDS on research and development of nucleic acid-based nanomedicines. Drug Deliv Transl Res. 2017;7(1):188–93. https://doi.org/10.1007/s13346-016-0345-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen ZH, YP Y, Zuo ZH, Nelson JB, Michalopoulos GK, Monga S, et al. Targeting genomic rearrangements in tumor cells through Cas9-mediated insertion of a suicide gene. Nat Biotechnol. 2017;35(6):543–50. https://doi.org/10.1038/nbt.3843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. 2015;33(2):187–97. https://doi.org/10.1038/nbt.3117.

    Article  CAS  PubMed  Google Scholar 

  9. Shi L, Tang X, Tang G. GUIDE-seq to detect genome-wide double-stranded breaks in plants. Trends Plant Sci. 2016;21(10):815–8. https://doi.org/10.1016/j.tplants.2016.08.005.

    Article  CAS  PubMed  Google Scholar 

  10. Tsai SQ, Topkar VV, Joung JK, Aryee MJ. Open-source guideseq software for analysis of GUIDE-seq data. Nat Biotechnol. 2016;34(5):483. https://doi.org/10.1038/nbt.3534.

    Article  PubMed  Google Scholar 

  11. Tsai SQ, Nguyen NT, Malagon-Lopez J, Topkar VV, Aryee MJ, Joung JK. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat Methods. 2017;14(6):607–14. https://doi.org/10.1038/nmeth.4278.

    Article  CAS  PubMed  Google Scholar 

  12. Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543(7643):113–7. https://doi.org/10.1038/nature21405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520(7546):186–91. https://doi.org/10.1038/nature14299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang L, Li F, Dang L, Liang C, Wang C, He B, et al. In vivo delivery systems for therapeutic genome editing. Int J Mol Sci. 2016;17(5) https://doi.org/10.3390/ijms17050626.

  15. Cheng R, Peng J, Yan Y, Cao P, Wang J, Qiu C, et al. Efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9. FEBS Lett. 2014;588(21):3954–8. https://doi.org/10.1016/j.febslet.2014.09.008.

    Article  CAS  PubMed  Google Scholar 

  16. Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, JH H, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33(1):73–80. https://doi.org/10.1038/nbt.3081.

    Article  CAS  PubMed  Google Scholar 

  17. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159(2):440–55. https://doi.org/10.1016/j.cell.2014.09.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 2014;24(6):1020–7. https://doi.org/10.1101/gr.171264.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. 2016 Jan;351(6271):407–11. https://doi.org/10.1126/science.aad5177.

    Article  CAS  PubMed  Google Scholar 

  20. Miller JB, Zhang S, Kos P, Xiong H, Zhou K, Perelman SS, et al. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew Chem Int Ed Engl. 2017;56(4):1059–63. https://doi.org/10.1002/anie.201610209.

    Article  CAS  PubMed  Google Scholar 

  21. Yin C, Zhang T, Qu X, Zhang Y, Putatunda R, Xiao X, et al. In vivo excision of HIV-1 provirus by saCas9 and multiplex single-guide RNAs in animal models. Mol Ther. 2017;25(5):1168–86. https://doi.org/10.1016/j.ymthe.2017.03.012.

    Article  CAS  PubMed  Google Scholar 

  22. Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001;27(3):247–54. https://doi.org/10.1038/85798.

    Article  CAS  PubMed  Google Scholar 

  23. Capecchi MR. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet. 2005;6(6):507–12. https://doi.org/10.1038/nrg1619.

    Article  CAS  PubMed  Google Scholar 

  24. Fell VL, Schild-Poulter C. Ku regulates signaling to DNA damage response pathways through the Ku70 von Willebrand A domain. Mol Cell Biol. 2012;32(1):76–87. https://doi.org/10.1128/MCB.05661-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Davis AJ, Chen DJ. DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. 2013;2(3):130–43. https://doi.org/10.3978/j.issn.2218-676X.2013.04.02.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Quadros RM, Miura H, Harms DW, Akatsuka H, Sato T, Aida T, et al. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol. 2017;18(1):92-017-1220-4. https://doi.org/10.1186/s13059-017-1220-4.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hutmacher DW, Horch RE, Loessner D, Rizzi S, Sieh S, Reichert JC, et al. Translating tissue engineering technology platforms into cancer research. J Cell Mol Med. 2009;13(8A):1417–27. https://doi.org/10.1111/j.1582-4934.2009.00853.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Das Thakur M, Pryer NK, Singh M. Mouse tumour models to guide drug development and identify resistance mechanisms. J Pathol. 2014;232(2):103–11. https://doi.org/10.1002/path.4285.

    Article  PubMed  Google Scholar 

  29. Van Dyke T, Jacks T. Cancer modeling in the modern era: progress and challenges. Cell. 2002;108(2):135–44. https://doi.org/10.1016/S0092-8674(02)00621-9.

    Article  PubMed  Google Scholar 

  30. Berzins SP, Smyth MJ, Baxter AG. Presumed guilty: natural killer T cell defects and human disease. Nat Rev Immunol. 2011;11(2):131–42. https://doi.org/10.1038/nri2904.

    Article  CAS  PubMed  Google Scholar 

  31. Vivier E, Ugolini S, Blaise D, Chabannon C, Brossay L. Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol. 2012;12(4):239–52. https://doi.org/10.1038/nri3174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith DJ, Liu S, Ji S, Li B, McLaughlin J, Cheng D, et al. Genetic engineering of hematopoietic stem cells to generate invariant natural killer T cells. Proc Natl Acad Sci U S A. 2015;112(5):1523–8. https://doi.org/10.1073/pnas.1424877112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med. 2001;7(3):297–303. https://doi.org/10.1038/85438.

    Article  CAS  PubMed  Google Scholar 

  34. Andre F, Schartz NE, Chaput N, Flament C, Raposo G, Amigorena S, et al. Tumor-derived exosomes: a new source of tumor rejection antigens. Vaccine. 2002;20(Suppl 4):A28–31. https://doi.org/10.1016/S0264-410X(02)00384-5.

    Article  CAS  PubMed  Google Scholar 

  35. Morishita M, Takahashi Y, Nishikawa M, Sano K, Kato K, Yamashita T, et al. Quantitative analysis of tissue distribution of the B16BL6-derived exosomes using a streptavidin-lactadherin fusion protein and iodine-125-labeled biotin derivative after intravenous injection in mice. J Pharm Sci. 2015;104(2):705–13. https://doi.org/10.1002/jps.24251.

    Article  CAS  PubMed  Google Scholar 

  36. Morishita M, Takahashi Y, Matsumoto A, Nishikawa M, Takakura Y. Exosome-based tumor antigens-adjuvant co-delivery utilizing genetically engineered tumor cell-derived exosomes with immunostimulatory CpG DNA. Biomaterials. 2016;111:55–65. https://doi.org/10.1016/j.biomaterials.2016.09.031.

    Article  CAS  PubMed  Google Scholar 

  37. He M, Crow J, Roth M, Zeng Y, Godwin AK. Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip. 2014;14(19):3773–80. https://doi.org/10.1039/C4LC00662C.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu Y, Wang F, Zhang C, Du J. Preparation and mechanism insight of nuclear envelope-like polymer vesicles for facile loading of biomacromolecules and enhanced biocatalytic activity. ACS Nano. 2014;8(7):6644–54. https://doi.org/10.1021/nn502386j.

    Article  CAS  PubMed  Google Scholar 

  39. Chaudhary AK, Mondal G, Kumar V, Kattel K, Mahato RI. Chemosensitization and inhibition of pancreatic cancer stem cell proliferation by overexpression of microRNA-205. Cancer Lett. 2017;402:1–8. https://doi.org/10.1016/j.canlet.2017.05.007.

    Article  CAS  PubMed  Google Scholar 

  40. Chen J, Liu Q, Xiao J, Du J. EpCAM-antibody-labeled noncytotoxic polymer vesicles for cancer stem cells-targeted delivery of anticancer drug and siRNA. Biomacromolecules. 2015;16(6):1695–705. https://doi.org/10.1021/acs.biomac.5b00551.

    Article  CAS  PubMed  Google Scholar 

  41. Choi HW, Kim J, Kim J, Kim Y, Song HB, Kim JH, et al. Light-induced acid generation on a gatekeeper for smart nitric oxide delivery. ACS Nano. 2016;10(4):4199–208. https://doi.org/10.1021/acsnano.5b07483.

    Article  CAS  PubMed  Google Scholar 

  42. Kumar V, Chaudhary AK, Dong Y, Zhong HA, Mondal G, Lin F, et al. Design, synthesis and biological evaluation of novel hedgehog inhibitors for treating pancreatic cancer. Sci Rep. 2017;7(1):1665-017-01942-7. https://doi.org/10.1038/s41598-017-01942-7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The meeting was sponsored by Dr. Courtney Fletcher and the College of Pharmacy, Department of Pharmaceutical Sciences, Center for Drug Discovery and Nanomedicine (CDDN), Dr. David Oupicky, Dr. Dong Wang, and Dr. Corey Hopkins from UNMC. We also acknowledge the financial support from the National Institutes of Health (1R01EB017853 and R01GM113166) to Dr. Ram I. Mahato.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram I. Mahato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, A.K., Bhattarai, R.S. & Mahato, R.I. The fourth annual BRDS on genome editing and silencing for precision medicines. Drug Deliv. and Transl. Res. 8, 266–272 (2018). https://doi.org/10.1007/s13346-017-0457-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0457-5

Keywords

Navigation