Skip to main content

Advertisement

Log in

Intraperitoneal delivery of paclitaxel by poly(ether-anhydride) microspheres effectively suppresses tumor growth in a murine metastatic ovarian cancer model

  • Short Communication
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Intraperitoneal (IP) chemotherapy is more effective than systemic chemotherapy for treating advanced ovarian cancer, but is typically associated with severe complications due to high dose, frequent administration schedule, and use of non-biocompatible excipients/delivery vehicles. Here, we developed paclitaxel (PTX)-loaded microspheres composed of di-block copolymers of poly(ethylene glycol) and poly(sebacic acid) (PEG-PSA) for safe and sustained IP chemotherapy. PEG-PSA microspheres provided efficient loading (∼13 % w/w) and prolonged release (∼13 days) of PTX. In a murine ovarian cancer model, a single dose of IP PTX/PEG-PSA particles effectively suppressed tumor growth for more than 40 days and extended the median survival time to 75 days compared to treatments with Taxol® (47 days) or IP placebo particles (34 days). IP PTX/PEG-PSA was well tolerated with only minimal to mild inflammation. Our findings support PTX/PEG-PSA microspheres as a promising drug delivery platform for IP therapy of ovarian cancer and potentially other metastatic peritoneal cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  2. Agarwal R, Kaye SB. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer. 2003;3(7):502–16.

    Article  PubMed  CAS  Google Scholar 

  3. Markman M. Intraperitoneal antineoplastic drug delivery: rationale and results. Lancet Oncol. 2003;4(5):277–83.

    Article  PubMed  CAS  Google Scholar 

  4. Armstrong DK, Bundy B, Wenzel L, Huang HQ, Baergen R, Lele S, et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med. 2006;354(1):34–43.

    Article  PubMed  CAS  Google Scholar 

  5. Walker JL, Armstrong DK, Huang HQ, Fowler J, Webster K, Burger RA, et al. Intraperitoneal catheter outcomes in a phase III trial of intravenous versus intraperitoneal chemotherapy in optimal stage III ovarian and primary peritoneal cancer: a Gynecologic Oncology Group Study. Gynecol Oncol. 2006;100(1):27–32.

    Article  PubMed  Google Scholar 

  6. Tummala MK, Alagarsamy S, McGuire WP. Intraperitoneal chemotherapy: standard of care for patients with minimal residual stage III ovarian cancer? Expert Rev Anticancer Ther. 2008;8(7):1135–47.

    Article  PubMed  CAS  Google Scholar 

  7. Lu Z, Wang J, Wientjes MG, Au JLS. Intraperitoneal therapy for peritoneal cancer. Future Oncol. 2010;6(10):1625–41.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Bajaj G, Yeo Y. Drug delivery systems for intraperitoneal therapy. Pharm Res. 2010;27(5):735–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. De Souza R, Zahedi P, Allen CJ, Piquette-Miller M. Polymeric drug delivery systems for localized cancer chemotherapy. Drug Deliv. 2010;17(6):365–75.

    Article  PubMed  Google Scholar 

  10. Xiao K, Luo J, Fowler WL, Li Y, Lee JS, Xing L, et al. A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials. 2009;30(30):6006–16.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Werner ME, Karve S, Sukumar R, Cummings ND, Copp JA, Chen RC, et al. Folate-targeted nanoparticle delivery of chemo- and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials. 2011;32(33):8548–54.

    Article  PubMed  CAS  Google Scholar 

  12. Lu Z, Tsai M, Lu D, Wang J, Wientjes MG, Au JL-S. Tumor-penetrating microparticles for intraperitoneal therapy of ovarian cancer. J Pharmacol Exp Ther. 2008;327(3):673–82.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Zahedi P, Stewart J, De Souza R, Piquette-Miller M, Allen C. An injectable depot system for sustained intraperitoneal chemotherapy of ovarian cancer results in favorable drug distribution at the whole body, peritoneal and intratumoral levels. J Control Release. 2012;158(3):379–85.

    Article  PubMed  CAS  Google Scholar 

  14. Bajaj G, Kim MR, Mohammed SI, Yeo Y. Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors. J Control Release. 2012;158(3):386–92.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Armstrong DK, Fleming GF, Markman M, Bailey HH. A phase I trial of intraperitoneal sustained-release paclitaxel microspheres (Paclimer) in recurrent ovarian cancer: a Gynecologic Oncology Group study. Gynecol Oncol. 2006;103(2):391–6.

    Article  PubMed  CAS  Google Scholar 

  16. Kumar N, Langer RS, Domb AJ. Polyanhydrides: an overview. Adv Drug Deliv Rev. 2002;54(7):889–910.

    Article  PubMed  CAS  Google Scholar 

  17. Pillai O, Panchagnula R. Polymers in drug delivery. Curr Opin Chem Biol. 2001;5(4):447–51.

    Article  PubMed  CAS  Google Scholar 

  18. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chem Rev. 1999;99(11):3181–98.

    Article  PubMed  CAS  Google Scholar 

  19. Gopferich A, Tessmar J. Polyanhydride degradation and erosion. Adv Drug Deliv Rev. 2002;54(7):911–31.

    Article  PubMed  CAS  Google Scholar 

  20. Leong KW, Brott BC, Langer R. Bioerodible polyanhydrides as drug-carrier matrices. I: characterization, degradation, and release characteristics. J Biomed Mater Res. 1985;19(8):941–55.

    Article  PubMed  CAS  Google Scholar 

  21. Jiang HL, Zhu KJ. Preparation, characterization and degradation characteristics of polyanhydrides containing poly(ethylene glycol). Polym Int. 1999;48(1):47–52.

    Article  CAS  Google Scholar 

  22. Fu J, Fiegel J, Krauland E, Hanes J. New polymeric carriers for controlled drug delivery following inhalation or injection. Biomaterials. 2002;23(22):4425–33.

    Article  PubMed  CAS  Google Scholar 

  23. Fu J, Fiegel J, Hanes J. Synthesis and characterization of PEG-based ether-anhydride terpolymers: novel polymers for controlled drug delivery. Macromolecules. 2004;37(19):7174–80.

    Article  CAS  Google Scholar 

  24. Tang BC, Dawson M, Lai SK, Wang YY, Suk JS, Yang M, et al. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci U S A. 2009;106(46):19268–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Tang BC, Fu J, Watkins DN, Hanes J. Enhanced efficacy of local etoposide delivery by poly(ether-anhydride) particles against small cell lung cancer in vivo. Biomaterials. 2010;31(2):339–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Erdmann L, Uhrich KE. Synthesis and degradation characteristics of salicylic acid-derived poly(anhydride-esters). Biomaterials. 2000;21(19):1941–6.

    Article  PubMed  CAS  Google Scholar 

  27. Slivniak R, Domb AJ. Stereocomplexes of enantiomeric lactic acid and sebacic acid ester-anhydride triblock copolymers. Biomacromolecules. 2002;3(4):754–60.

    Article  PubMed  CAS  Google Scholar 

  28. Shikanov A, Vaisman B, Krasko MY, Nyska A, Domb AJ. Poly(sebacic acid-co-ricinoleic acid) biodegradable carrier for paclitaxel: in vitro release and in vivo toxicity. J Biomed Mater Res A. 2004;69(1):47–54.

    Article  PubMed  Google Scholar 

  29. Pfeifer BA, Burdick JA, Langer R. Formulation and surface modification of poly(ester-anhydride) micro- and nanospheres. Biomaterials. 2005;26(2):117–24.

    Article  PubMed  CAS  Google Scholar 

  30. Shikanov A, Domb AJ. Poly(sebacic acid-co-ricinoleic acid) biodegradable injectable in situ gelling polymer. Biomacromolecules. 2006;7(1):288–96.

    Article  PubMed  CAS  Google Scholar 

  31. Shikanov A, Vaisman B, Shikanov S, Domb AJ. Efficacy of poly(sebacic acid-co-ricinoleic acid) biodegradable delivery system for intratumoral delivery of paclitaxel. J Biomed Mater Res A. 2010;92(4):1283–91.

    PubMed  Google Scholar 

  32. Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl. 2010;49(36):6288–308.

    Article  PubMed  CAS  Google Scholar 

  33. Gref R, Domb A, Quellec P, Blunk T, Muller RH, Verbavatz JM, et al. The controlled intravenous delivery of drugs using peg-coated sterically stabilized nanospheres. Adv Drug Deliv Rev. 1995;16(2–3):215–33.

    Article  CAS  Google Scholar 

  34. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263(5153):1600–3.

    Article  PubMed  CAS  Google Scholar 

  35. Owens 3rd DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102.

    Article  PubMed  CAS  Google Scholar 

  36. Innocenti F, Danesi R, Di Paolo A, Agen C, Nardini D, Bocci G, et al. Plasma and tissue disposition of paclitaxel (taxol) after intraperitoneal administration in mice. Drug Metab Dispos Biol Fate Chem. 1995;23(7):713–7.

    PubMed  CAS  Google Scholar 

  37. Hung CF, Tsai YC, He L, Wu TC. Control of mesothelin-expressing ovarian cancer using adoptive transfer of mesothelin peptide-specific CD8+ T cells. Gene Ther. 2007;14(12):921–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Chang CL, Tsai YC, He L, Wu TC, Hung CF. Cancer immunotherapy using irradiated tumor cells secreting heat shock protein 70. Cancer Res. 2007;67(20):10047–57.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J: Off Publ Fed Am Soc Exp Biol. 2008;22(3):659–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants U54CA151838 (J.H.), P50CA098252 (T.W.), R01CA114425 (T.W.) and a National Science Foundation Graduate Research Fellowship (Y.-Y. W.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute. We thank M. Koontz, N. Forbes-McBean, and M. Chen for the technical and experimental assistance.

Conflict of interest

The authors declare no conflicts of interest.

Declaration of ethical standards

The experiments in this work comply with the current laws of the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Hanes.

Additional information

Ming Yang and Tao Yu contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 78.0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, M., Yu, T., Wood, J. et al. Intraperitoneal delivery of paclitaxel by poly(ether-anhydride) microspheres effectively suppresses tumor growth in a murine metastatic ovarian cancer model. Drug Deliv. and Transl. Res. 4, 203–209 (2014). https://doi.org/10.1007/s13346-013-0190-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-013-0190-7

Keywords

Navigation