Skip to main content
Log in

Microparticles based on chitosan/pectin polyelectrolyte complexes for nasal delivery of tacrine hydrochloride

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The aim of this study was the investigation of powder-based formulations for nasal administration of tacrine hydrochloride. The anti-Alzheimer drug was encapsulated in mucoadhesive microparticles based on chitosan/pectin polyelectrolyte complexes. Microparticles were prepared by means of two different technological approaches (direct spray-drying and spray-drying followed by lyophilization) and analysed in terms of size, morphology and physico-chemical characteristics. Moreover, water uptake and mucoadhesion ability were evaluated as well as drug release and permeation behaviour. The results suggest that lyophilization favours the formation of small particle aggregates with a size of 10 μm, instead of single particles (size smaller than 5 μm) such as direct spray-drying. Particles obtained with the two loading methods present different functional properties according to the different physical state of the loaded drug and its possible interaction with chitosan/pectin complex. Moreover, the presence of different amount of chitosan and pectin in the complex influences their ability to hydrate, interact with mucin and favour drug permeation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Maurya SK, Pathak K, Bali V. Therapeutic potential of mucoadhesive drug delivery systems—an updated patent review. Recent Patents Drug Deliv Formul. 2010;4(3):256–65. Review.

    Article  CAS  Google Scholar 

  2. Alhalaweh A, Vilinska A, Gavini E, Rassu G, Velaga SP. Surface thermodynamics of mucoadhesive dry powder formulation of zolmitriptan. AAPS Pharm Sci Tech. 2011;12(4):1186–92.

    Article  CAS  Google Scholar 

  3. Gavini E, Rassu G, Ferraro L, Generosi A, Rau JV, Brunetti A, et al. Influence of chitosan glutamate on the in vivo intranasal absorption of rokitamycin from microspheres. J Pharm Sci. 2010. doi:10.1002/jps.22382.

  4. Bowey K, Neufeld RJ. Systemic and mucosal delivery of drugs within polymeric microparticles produced by spray drying. BioDrugs. 2010;24(6):359–77. Review.

    Article  PubMed  CAS  Google Scholar 

  5. Sollohub K, Cal K. Spray drying technique: II. Current applications in pharmaceutical technology. J Pharm Sci. 2010;99(2):587–97. Review.

    PubMed  CAS  Google Scholar 

  6. Illum L. Nasal drug delivery—recent developments and future prospects. J Control Release. 2012. doi:10.1016/j.jconrel.2012.01.024.

  7. Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm. 2007;337(1-2):1–24. Review.

    Article  PubMed  CAS  Google Scholar 

  8. Schroeter JD, Kimbell JS, Asgharian B. Analysis of particle deposition in the turbinate and olfactory region using a human nasal computational fluid dynamic model. J Aerosol Med. 2006;19:301–13.

    Article  PubMed  CAS  Google Scholar 

  9. Merkus FW, Verhoef JC, Schipper NG, Marttin E. Nasal mucociliary clearance as a factor for nasal drug delivery. Adv Drug Deliv Rev. 1998;29:13–38.

    Article  PubMed  Google Scholar 

  10. Callens C, Ceulemans J, Ludwig A, Foreman P, Remon JP. Rheological study on mucoadhesivity of some nasal powder formulations. Eur J Pharm Biopharm. 2003;55(3):323–8.

    Article  PubMed  CAS  Google Scholar 

  11. Hägerström H, Paulsson M, Edsman K. Evaluation of mucoadhesion for two polyelectrolyte gels in simulated physiological conditions using a rheological method. Eur J Pharm Biopharm. 2000;9(3):301–9.

    Google Scholar 

  12. Lai SK, Wang Y-Y, Wirtz D, Hanes J. Micro- and macrorheology of mucus. Adv Drug Deliv Rev. 2009;61(2):86–100.

    Article  PubMed  CAS  Google Scholar 

  13. Morris G, Kök S, Harding S, Adams G. Polysaccharide drug delivery systems based on pectin and chitosan. Biotechnol Genet Eng Rev. 2010;27:257–84. Review.

    PubMed  CAS  Google Scholar 

  14. Hamman JH. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs. 2010;8(4):1305–22. Review.

    Article  PubMed  CAS  Google Scholar 

  15. Freeman SE, Dawson RM. Tacrine: a pharmacological review. Prog Neurobiol. 1991;36:257–77.

    Article  PubMed  CAS  Google Scholar 

  16. Ping H, Davis SS, Illum L. In vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int J Pharm. 1998;166:75–88.

    Article  Google Scholar 

  17. Luppi B, Bigucci F, Abruzzo A, Corace G, Cerchiara T, Zecchi V. Freeze-dried chitosan/pectin nasal inserts for antipsychotic drug delivery. Eur J Pharm Biopharm. 2010;75:381–7.

    Article  PubMed  CAS  Google Scholar 

  18. Sorrenti M, Catenacci L, Bruni G, Luppi B, Bigucci F, Bettinetti G. Solid-state characterization of tacrine hydrochloride. J Pharm Biomed Anal. 2012;63:53–61.

    Article  PubMed  CAS  Google Scholar 

  19. Björk E, Isaksson U, Edman P, Artursson P. Starch microspheres induce pulsatile delivery of drugs and peptides across the epithelial barrier by reversible separation of the tight junctions. J Drug Target. 1995;2(6):501–7.

    Article  PubMed  Google Scholar 

  20. Cal K, Sollohub K. Spray drying technique. I: Hardware and process parameters. J Pharm Sci. 2010;99(2):575–86. Review.

    PubMed  CAS  Google Scholar 

  21. Gavini E, Hegge AB, Rassu G, Sanna V, Testa C, Pirisino G, et al. Nasal administration of carbamazepine using chitosan microspheres: in vitro/in vivo studies. Int J Pharm. 2006;307(1):9–15.

    Article  PubMed  CAS  Google Scholar 

  22. Colombo P, Buttini F, Sonvico F, Colombo G, Russo P, Scatturin A, et al. Respiratory drug delivery. Proc Int Sch Adv Mater Sci Technol. 2005; 91–110.

  23. Djupesland PG, Skretting A, Winderen M, Holand T. Bi-directional nasal delivery of aerosols can prevent lung deposition. J Aerosol Med. 2004;17(3):249–59.

    Article  PubMed  CAS  Google Scholar 

  24. Bigucci F, Luppi B, Monaco L, Cerchiara T, Zecchi V. Pectin-based microspheres for colon-specific delivery of vancomycin. J Pharm Pharmacol. 2009;61(1):41–6.

    Article  PubMed  CAS  Google Scholar 

  25. Luppi B, Bigucci F, Cerchiara T, Zecchi V. Chitosan-based hydrogels for nasal drug delivery: from inserts to nanoparticles. Expert Opin Drug Deliv. 2010;7(7):811–28.

    Article  PubMed  CAS  Google Scholar 

  26. Peppas NA, Sahlin JJ. Hydrogels as mucoadhesive and bioadhesive materials: a review. Biomaterials. 1996;17:1553–61.

    Article  PubMed  CAS  Google Scholar 

  27. Peppas NA, Buri PA. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J Control Release. 1985;2:257–75.

    Article  CAS  Google Scholar 

  28. Davis SS, Illum L. Absorption enhancers for nasal drug delivery. Clin Pharmacokinet. 2003;42(13):1107–28. Review.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant received from the Fondazione Cassa di Risparmio di Imola. The authors would like to thank Giulia Nerina Nardone for her contribution to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Luppi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saladini, B., Bigucci, F., Cerchiara, T. et al. Microparticles based on chitosan/pectin polyelectrolyte complexes for nasal delivery of tacrine hydrochloride. Drug Deliv. and Transl. Res. 3, 33–41 (2013). https://doi.org/10.1007/s13346-012-0086-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-012-0086-y

Keywords

Navigation