Skip to main content

Advertisement

Log in

Prodrug enzymes and their applications in image-guided therapy of cancer: tracking prodrug enzymes to minimize collateral damage

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Many cytotoxic therapies are available to kill cancer cells. Unfortunately, these also inflict significant damage on normal cells. Identifying highly effective cancer treatments that have minimal or no side effects continues to be a major challenge. One of the strategies to minimize damage to normal tissue is to deliver an activating enzyme that localizes only in the tumor and converts a nontoxic prodrug to a cytotoxic agent locally in the tumor. Such strategies have been previously tested but with limited success due in large part to the uncertainty in the delivery and distribution of the enzyme. Imaging the delivery of the enzyme to optimize timing of the prodrug administration to achieve image-guided prodrug therapy would be of immense benefit for this strategy. Here, we have reviewed advances in the incorporation of image guidance in the applications of prodrug enzymes in cancer treatment. These advances demonstrate the feasibility of using clinically translatable imaging in these prodrug enzyme strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

bCD:

Bacterial cytosine deaminase

CD:

Cytosine deaminase

Chk:

Choline kinase

dCK:

Deoxycytidine kinase

DPD:

Dihydropyrimidine dehydrogenase

EPR:

Enhanced permeability and retention

FDG:

[18F]fluorodeoxyglucose

5-FC:

5-Fluorocytosine

FdUMP, FdUDP, and FdUTP:

2′-Deoxy-5-fluorouridine mono-, di-, and triphosphates

[18F]FHBG:

9-(4-[18F]fluoro-3-hydroxymethylbutyl)guanine

FNucs:

Fluoronucleotides

5-FU:

5-Fluorouracil

FUMP, FUDP, and FUTP:

5-Fluorouridine-5′-mono-, di-, and triphosphates

GCV:

Ganciclovir

GDEPT:

Gene encoding prodrug-activating enzyme therapy

HSV1:

Herpes simplex virus type 1

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

MRSI:

Magnetic resonance spectroscopic imaging

PET:

Positron emission tomography

PLL:

Poly-l-lysine

siRNA:

Small interfering RNA

tCho:

Total choline

TDEPT:

Targeting group-directed enzyme/prodrug therapy

TK:

Thymidine kinase

UPRT:

Uracil phosphoribosyltransferase

VDEPT:

Virus-directed enzyme prodrug therapy

VPDEPT:

Vasculature permeability-dependent enzyme/prodrug therapy

yCD:

Yeast cytosine deaminase

References

  1. Xu G, et al. Strategies for enzyme/prodrug cancer therapy. Clin Cancer Res. 2001;7(11):3314–24.

    PubMed  CAS  Google Scholar 

  2. Mahato R, et al. Prodrugs for improving tumor targetability and efficiency. Adv Drug Deliv Rev. 2011;63(8):659–70. PMCID: 3132824.

    Article  PubMed  CAS  Google Scholar 

  3. Sharma SK, et al. Sustained tumor regression of human colorectal cancer xenografts using a multifunctional mannosylated fusion protein in antibody-directed enzyme prodrug therapy. Clin Cancer Res. 2005;11(2 Pt 1):814–25.

    PubMed  CAS  Google Scholar 

  4. Bhatia J, et al. Catalytic activity of an in vivo tumor targeted anti-CEA scFv::carboxypeptidase G2 fusion protein. Int J Cancer. 2000;85(4):571–7.

    Article  PubMed  CAS  Google Scholar 

  5. Longley DB, et al. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3(5):330–8.

    Article  PubMed  CAS  Google Scholar 

  6. Aboagye EO, et al. Intratumoral conversion of 5-fluorocytosine to 5-fluorouracil by monoclonal antibody-cytosine deaminase conjugates: noninvasive detection of prodrug activation by magnetic resonance spectroscopy and spectroscopic imaging. Cancer Res. 1998;58(18):4075–8.

    PubMed  CAS  Google Scholar 

  7. Hamstra DA, et al. The use of 19F spectroscopy and diffusion-weighted MRI to evaluate differences in gene-dependent enzyme prodrug therapies. Mol Ther. 2004;10(5):916–28.

    Article  PubMed  CAS  Google Scholar 

  8. Wright CM, et al. A protein therapeutic modality founded on molecular regulation. Proc Natl Acad Sci U S A. 2011;108(39):16206–11. PMCID: 3182702.

    Article  PubMed  CAS  Google Scholar 

  9. Crystal RG, et al. Phase I study of direct administration of a replication deficient adenovirus vector containing the E. coli cytosine deaminase gene to metastatic colon carcinoma of the liver in association with the oral administration of the pro-drug 5-fluorocytosine. Hum Gene Ther. 1997;8(8):985–1001.

    Article  PubMed  CAS  Google Scholar 

  10. Pandha HS, et al. Genetic prodrug activation therapy for breast cancer: a phase I clinical trial of erbB-2-directed suicide gene expression. J Clin Oncol. 1999;17(7):2180–9.

    PubMed  CAS  Google Scholar 

  11. Li C, et al. Image-guided enzyme/prodrug cancer therapy. Clin Cancer Res. 2008;14(2):515–22.

    Article  PubMed  CAS  Google Scholar 

  12. Li C, et al. Nanoplex delivery of siRNA and prodrug enzyme for multimodality image-guided molecular pathway targeted cancer therapy. ACS Nano. 2010;4(11):6707–16.

    Article  PubMed  CAS  Google Scholar 

  13. Xing L, et al. Non-invasive molecular and functional imaging of cytosine deaminase and uracil phosphoribosyltransferase fused with red fluorescence protein. Acta Oncol. 2008;47(7):1211–20.

    Article  PubMed  CAS  Google Scholar 

  14. Blasberg RG, et al. Herpes simplex virus thymidine kinase as a marker/reporter gene for PET imaging of gene therapy. Q J Nucl Med. 1999;43(2):163–9.

    PubMed  CAS  Google Scholar 

  15. Yaghoubi SS, et al. Imaging progress of herpes simplex virus type 1 thymidine kinase suicide gene therapy in living subjects with positron emission tomography. Cancer Gene Ther. 2005;12(3):329–39.

    Article  PubMed  CAS  Google Scholar 

  16. Schipper ML, et al. Evaluation of herpes simplex virus 1 thymidine kinase-mediated trapping of (131)I FIAU and prodrug activation of ganciclovir as a synergistic cancer radio/chemotherapy. Mol Imaging Biol. 2007;9(3):110–6.

    Article  PubMed  Google Scholar 

  17. Miyagawa T, et al. Imaging of HSV-tk Reporter gene expression: comparison between [18F]FEAU, [18F]FFEAU, and other imaging probes. J Nucl Med. 2008;49(4):637–48.

    Article  PubMed  CAS  Google Scholar 

  18. Abate-Daga D, et al. Oncolytic adenoviruses armed with thymidine kinase can be traced by PET imaging and show potent antitumoural effects by ganciclovir dosing. PLoS One. 2011;6(10):e26142. PMCID: 3196510.

    Article  PubMed  CAS  Google Scholar 

  19. Tseng JC, et al. Tumor-specific in vivo transfection with HSV-1 thymidine kinase gene using a Sindbis viral vector as a basis for prodrug ganciclovir activation and PET. J Nucl Med. 2006;47(7):1136–43.

    PubMed  CAS  Google Scholar 

  20. Penuelas I, et al. Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterology. 2005;128(7):1787–95.

    Article  PubMed  CAS  Google Scholar 

  21. Jacobs AH, et al. Imaging-guided gene therapy of experimental gliomas. Cancer Res. 2007;67(4):1706–15.

    Article  PubMed  CAS  Google Scholar 

  22. Chandran SS, et al. A prostate-specific antigen activated N-(2-hydroxypropyl) methacrylamide copolymer prodrug as dual-targeted therapy for prostate cancer. Mol Cancer Ther. 2007;6(11):2928–37.

    Article  PubMed  CAS  Google Scholar 

  23. LeBeau AM, et al. Optimization of peptide-based inhibitors of prostate-specific antigen (PSA) as targeted imaging agents for prostate cancer. Bioorg Med Chem. 2009;17(14):4888–93. PMCID: 3087300.

    Article  PubMed  CAS  Google Scholar 

  24. Chuang CH, et al. In vivo positron emission tomography imaging of protease activity by generation of a hydrophobic product from a non-inhibitory protease substrate. Clin Cancer Res. 2011. doi:10.1158/1078-0432.CCR-11-0608.

  25. Rowsell S, et al. Crystal structure of carboxypeptidase G2, a bacterial enzyme with applications in cancer therapy. Structure. 1997;5(3):337–47.

    Article  PubMed  CAS  Google Scholar 

  26. Jamin Y, et al. Noninvasive detection of carboxypeptidase G2 activity in vivo. NMR Biomed. 2011;24(4):343–50.

    CAS  Google Scholar 

  27. Hedley D, et al. Carboxypeptidase-G2-based gene-directed enzyme-prodrug therapy: a new weapon in the GDEPT armoury. Nat Rev Cancer. 2007;7(11):870–9.

    Article  PubMed  CAS  Google Scholar 

  28. Jamin Y, et al. Hyperpolarized (13)C magnetic resonance detection of carboxypeptidase G2 activity. Magn Reson Med. 2009;62(5):1300–4.

    Article  PubMed  CAS  Google Scholar 

  29. Lim SH, et al. Therapeutic targeting of subdural medulloblastomas using human neural stem cells expressing carboxylesterase. Cancer Gene Ther. 2011;18(11):817–24.

    Article  PubMed  CAS  Google Scholar 

  30. Shu CJ, et al. Novel PET probes specific for deoxycytidine kinase. J Nucl Med. 2010;51(7):1092–8. PMCID: 3119947.

    Article  PubMed  CAS  Google Scholar 

  31. Likar Y, et al. A new pyrimidine-specific reporter gene: a mutated human deoxycytidine kinase suitable for PET during treatment with acycloguanosine-based cytotoxic drugs. J Nucl Med. 2010;51(9):1395–403.

    Article  PubMed  CAS  Google Scholar 

  32. Bhaumik S, et al. Noninvasive optical imaging of nitroreductase gene-directed enzyme prodrug therapy system in living animals. Gene Therapy. 2011. doi:10.1038/gt.2011.101.

  33. Patel P, et al. A phase I/II clinical trial in localized prostate cancer of an adenovirus expressing nitroreductase with CB1954 [correction of CB1984]. Molecular Therapy. 2009;17(7):1292–9. PMCID: 2835198.

    Article  PubMed  CAS  Google Scholar 

  34. Van Rite BD, et al. Annexin V-targeted enzyme prodrug therapy using cytosine deaminase in combination with 5-fluorocytosine. Cancer Lett. 2011;307(1):53–61.

    Article  PubMed  Google Scholar 

  35. Tietze LF, et al. Prodrugs for targeted tumor therapies: recent developments in ADEPT, GDEPT and PMT. Curr Pharm Des. 2011;17(32):3527–47.

    Article  PubMed  CAS  Google Scholar 

  36. Goel S, et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 2011;91(3):1071–121.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support from P50 CA103175, P30 CA006973, R01 CA73850, R01 CA82337, R01 CA136576, R01 CA138515, and R01 CA138264 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaver M. Bhujwalla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penet, MF., Chen, Z., Li, C. et al. Prodrug enzymes and their applications in image-guided therapy of cancer: tracking prodrug enzymes to minimize collateral damage. Drug Deliv. and Transl. Res. 2, 22–30 (2012). https://doi.org/10.1007/s13346-011-0052-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-011-0052-0

Keywords

Navigation