Skip to main content
Log in

Design and evaluation of matrix base with sigmoidal release profile for colon-specific delivery using a combination of Eudragit and non-ionic cellulose ether polymers

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

A pH- and time-controlled drug delivery system with sigmoidal release profile was developed using Eudragit (L100 or S100) in combination with hydroxy ethyl cellulose (HEC) or hydroxy propyl cellulose (HPC) for sigmoidal release of indomethacin in the potential treatment of colon cancer. The effect of varying proportions of polymer type on sigmoidal release was evaluated. The prepared tablets were also characterized for physical characteristics, in vitro drug release, release kinetics, and stability on storage. The gastrointestinal transit of formulations was also investigated in human subjects. Results from in vitro release studies indicated that due to the presence of pH-responsive polymers, a pH- and time-dependent release pattern was observed, which was characterized by negligible drug release in first 4–6 h followed by controlled release for 14–16 h in alkaline pH. In vivo studies indicated that HPC-based formulations had satisfactory matrix strength to withstand gastric and colonic transit, while HEC-based tablets disintegrated during transit through the small intestine. All the formulations were stable on storage. It was concluded that such a matrix design has good potential for drug delivery to colon with controlled release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hull MA, Gardner SH, Hawcroft G. Activity of the non-steroidal anti-inflammatory drug indomethacin against colorectal cancer. Cancer Treat Rev. 2003;29:309–20.

    Article  PubMed  CAS  Google Scholar 

  2. Mandayam S, Huang R, Tarnawski AS, Chiou SK. Roles of survivin isoforms in the chemopreventive actions of NSAIDS on colon cancer cells. Apoptosis. 2007;12:1109–16.

    Article  PubMed  CAS  Google Scholar 

  3. Kapitanović S, Čačev T, Antica M, Kralj M, Cavrić G, Krešimir P, et al. Effect of indomethacin on E-cadherin and β-catenin expression in HT-29 colon cancer cells. Experimental Mol Path. 2006;80(1):91–6.

    Google Scholar 

  4. Goodman GA, Gilman LS. Analgesics–antipyretics; pharmacotherapy of gout. In: Brunton, editor. The pharmacological basis of therapeutics. New York: Mcgraw Hill; 2006. p. 699–700.

    Google Scholar 

  5. Rubinstein A. Approaches and opportunities in colon-specific drug delivery. Crit Rev Ther Drug Carrier Syst. 1995;12(2–3):101–49.

    PubMed  CAS  Google Scholar 

  6. Kinget R, Kalala W, Vervoort L, Mooter GU. Colonic drug targeting. J Drug Target. 1998;6:129–49.

    Article  PubMed  CAS  Google Scholar 

  7. Krishnaiah YSR, Satyanarayana S, Rama Prasad YV, Narasimha Rao S. Evaluation of guar gum as a compression coat for drug targeting to colon. Int J Pharm. 1998;171:137–46.

    Article  CAS  Google Scholar 

  8. Fernández-Hervás MJ, Fell JT. Pectin/chitosan mixtures as coatings for colon specific drug delivery: an in vitro evaluation. Int J Pharm. 1998;169:115–9.

    Article  Google Scholar 

  9. Sinha VR, Kumria R. Binders for colon specific drug delivery: an in vitro evaluation. Int J Pharm. 2002;249:23–31.

    Article  PubMed  CAS  Google Scholar 

  10. Akhgari A, Garekani HA, Sadeghi F, Azimaie M. Statistical optimization of indomethacin pellets coated with pH dependent methacrylic polymers for possible colonic drug delivery. Int J Pharm. 2005;305:22–30.

    Article  PubMed  CAS  Google Scholar 

  11. Ji C, Xu H, Wu W. In vitro evaluation and pharmacokinetics in dogs of guar gum and Eudragit FS 30D-coated colon-targeted pellets of indomethacin. J Drug Target. 2007;15(2):123–31.

    Article  PubMed  CAS  Google Scholar 

  12. Wu B, Deng D, Lu Y, Wu W. Biphasic release of indomethacin from HPMC/pectin/calcium matrix tablet: II. Influencing variables, stability and pharmacokinetics in dogs. Eur J Pharm Biopharm. 2007;67(3):707–14.

    Article  PubMed  CAS  Google Scholar 

  13. Ashford M, Fell JT, Attwood D, Woodhead PJB. An in vivo investigation into the suitability of pH-dependent polymers for colonic targeting. Int J Pharm. 1993;91:241–5.

    Article  CAS  Google Scholar 

  14. Ibekwe VC, Liu F, Fadda HM, Khela MK, Evans DF, Parsons GE, et al. An investigation into the in vivo performance variability of pH responsive polymers for ileo-colonic drug delivery using gamma scintigraphy in humans. J Pharm Sci. 2006;95(12):2760–6.

    Article  PubMed  CAS  Google Scholar 

  15. Wei X, Sun N, Wu B, Yin C, Wu W. Sigmoidal release of indomethacin from pectin matrix tablets: effect of in situ crosslinking by calcium cations. Int J Pharm. 2006;318:132–8.

    Article  PubMed  CAS  Google Scholar 

  16. Khan M, Prebeg Ž, Kurjakovi MN. A pH-dependent colon targeted oral drug delivery system using methacrylic acid copolymers. I. Manipulation of drug release using Eudragit™ L100-55 and Eudragit™ S100 combinations. J Control Rel. 1999;58:215–22.

    Article  CAS  Google Scholar 

  17. Roy DS, Rohera BD. Comparative evaluation of rate of hydration and matrix erosion of HEC and HPC and study of drug release from their matrices. Eur J Pharm Sci. 2002;16:193–9.

    Article  Google Scholar 

  18. Asghar LF, Chandran S. Design and evaluation of pH modulated controlled release matrix systems for colon specific delivery of indomethacin. Pharmazie. 2008a;63:736–42.

    CAS  Google Scholar 

  19. Asghar LF, Chandran S. Design and evaluation of matrices of Eudragit with polycarbophil and carbopol for colon specific delivery. J Drug Target. 2008b;16:741–57.

    Article  CAS  Google Scholar 

  20. Chandran S, Kango SS, Asghar LFA. Microspheres with pH modulated release: design and characterization of formulation variables for colonic delivery. J Microencapsul. 2009;26:420–31. doi:10.1080/02652040802424021.

    Article  PubMed  CAS  Google Scholar 

  21. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.

    Article  CAS  Google Scholar 

  22. Ritger PL, Peppas NA. A simple equation for the description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Rel. 1987;5:23–36.

    Article  CAS  Google Scholar 

  23. Moore JW, Flanner HH. Mathematical comparison of dissolution profiles. Pharm Technol. 1996;20:64–74.

    Google Scholar 

  24. Bruce LD, Malick W, Shah NH, Infeld MH, McGinity JW. Properties of hot-melt extruded tablet formulations for the colonic delivery of 5-aminosalicylic acid. Eur J Pharm Biopharm. 2005;59:85–97.

    Article  PubMed  CAS  Google Scholar 

  25. Follonier N, Doelker E. Biopharmaceutical comparison of oral multiple-unit and single-unit sustained-release dosage forms. STP Pharma Sci. 1992;2:141–55.

    CAS  Google Scholar 

  26. Hinton JM, Lennard-Jonnes JE, Young AC. A new method for studying gut transit times using radioopaque markers. Gut. 1969;10:842.

    Article  PubMed  CAS  Google Scholar 

  27. Valizadeh H, Nokhodchi A, Qarakhani N, Zakeri-Milani P, Azarmi S, Hassanzadeh D, et al. Physicochemical characterization of solid dispersions of indomethacin with PEG 6000, Myrj 52, lactose, sorbitol, dextrin, and Eudragit E100. Drug Dev Ind Pharm. 2004;30(3):303–17.

    Article  PubMed  CAS  Google Scholar 

  28. Sheu MT, Chou HL, Kao CC, Liu CH, Sokoloski TD. Dissolution of diclofenac sodium from matrix tablets. Int J Pharm. 1992;85:57–63.

    Article  CAS  Google Scholar 

  29. Saha RN, Sajeev C, Sahoo J. A comparative study of controlled release matrix tablets of diclofenac sodium, ciprofloxacin hydrochloride, and theophylline. Drug Deliv. 2001;8(3):149–54.

    Article  PubMed  CAS  Google Scholar 

  30. Bain J, Tan S, Gandarton D, Solomon M. Comparison of the in vitro release characteristics of a wax matrix and a hydrogel sustained release diclofenac sodium tablet. Drug Dev Ind Pharm. 1991;17:215–32.

    Article  CAS  Google Scholar 

  31. Skoug JW, Mikelsons MV, Vigneron CN, Stemm NL. Qualitative evaluation of the mechanism of release of matrix sustained release dosage forms by measurement of polymer release. J Control Release. 1993;27:227–45.

    Article  CAS  Google Scholar 

  32. Al Taani B, Tashtoush BM. Effect of microenvironment pH of swellable and erodable buffered matrices on the release characteristics of diclofenac sodium. AAPS PharmSciTech. 2003;4(3):43.

    Google Scholar 

  33. Akiyama Y, Yoshioka M, Horibe H, Hirai S, Kitamori N, Toguchi H. pH-independent controlled-release microspheres using polyglycerol ester-fatty acids. J Pharm Sci. 1994;83:1600–7.

    Article  PubMed  CAS  Google Scholar 

  34. Mura P, Maestrelli F, Cirri M, González Rodríguez ML, Rabasco Alvarez AM. Development of enteric-coated pectin-based matrix tablets for colonic delivery of theophylline. J Drug Target. 2003;11:365–7.

    Article  PubMed  CAS  Google Scholar 

  35. Sinha VR, Kumria R. Coating polymers for colon specific drug delivery: a comparative in vitro evaluation. Acta Pharm. 2003;53:41–7.

    PubMed  CAS  Google Scholar 

  36. Mundargi RC, Patil SA, Agnihotri SA, Aminabhavi TM. Development of polysaccharide-based colon targeted drug delivery systems for the treatment of amoebiasis. Drug Dev Ind Pharm. 2007;33:255–64.

    Article  PubMed  CAS  Google Scholar 

  37. Wilding IR, Coupe AJ, Davis SS. The role of gamma scintigraphy in oral drug delivery. Adv Drug Del Rev. 2001;46:103–12.

    Article  CAS  Google Scholar 

  38. Podczeck F, Course NC, Newton JM, Short MB. The influence of non-disintegrating tablet dimensions and density on their gastric emptying in fasted volunteers. J Pharm Pharmacol. 2007;59(1):23–7.

    Article  PubMed  CAS  Google Scholar 

  39. Abrahamsson B, Alpsten M, Hugosson M, Jonsson UE, Sundgren M, Svenheden A, et al. Absorption, gastrointestinal transit and tablet erosion of felodipine extended-release tablets with different dissolution properties. Int J Pharm. 1993;60:151–6.

    Google Scholar 

  40. Adkin DA, Davis SS, Sparrow RA, Wilding IR. Colonic transit of different sized tablets in healthy subjects. J Control Release. 1993;23:141–56.

    Article  Google Scholar 

  41. Marvola T, Marvola J, Kanerva H, Ahonen A, Lindevall K, Marvola M. Neutron activation based gamma scintigraphic evaluation of enteric-coated capsules for local treatment in colon. Int J Pharm. 2008;349(1–2):24–9.

    Article  PubMed  CAS  Google Scholar 

  42. Verma RK, Garg S. Compatibility studies between isosorbide mononitrate and selected excipients used in the development of extended release formulations. J Pharm Biomed Anal. 2004;35:449–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Abhishek Gupta and the hospital staff of M.N. Budhrani Cancer Institute, Pune, India, for their kind cooperation and help during in vivo studies in human subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajeev Chandran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asghar, L.F.A., Chandran, S. Design and evaluation of matrix base with sigmoidal release profile for colon-specific delivery using a combination of Eudragit and non-ionic cellulose ether polymers. Drug Deliv. and Transl. Res. 1, 132–146 (2011). https://doi.org/10.1007/s13346-011-0016-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-011-0016-4

Keywords

Navigation