Skip to main content

Advertisement

Log in

Basal insulin ameliorates post-breakfast hyperglycemia via suppression of post-breakfast proinsulin/C-peptide ratio and fasting serum free fatty acid levels in patients with type 2 diabetes

  • Original Article
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

Background

In general, basal insulin targets fasting plasma glucose (FPG) levels, and prandial insulin targets postprandial glucose (PPG) levels. However, the effects of basal insulin on PPG levels are controversial. We investigated the effect of basal insulin on postprandial hyperglycemia using a test meal at breakfast as well as compared differences between degludec and glargine.

Methods

A total of 20 participants with type 2 diabetes were randomly assigned to degludec (n = 10) or glargine (n = 10). We initiated basal–bolus insulin therapy and titrated only basal insulin until FPG was < 6.1 mmol/L. We evaluated changes in post-breakfast glucose levels and changes in clinical parameters such as serum C-peptide (CPR), proinsulin (PI), and free fatty acids (FFA) levels between the pre- and post-titration periods. Differences between degludec and glargine in the post-titration period were also evaluated.

Results

Post-breakfast glucose levels significantly decreased by 46.1% in the post-titration period compared with the pre-titration period (n = 20, p < 0.001). These decreases correlated positively with decreases in the post-breakfast PI/CPR ratio (r = 0.692, p < 0.001) and in fasting FFA levels (r = 0.720, p < 0.001). There were no significant differences in post-breakfast glucose levels between degludec and glargine. However, the hypoglycemic rate with degludec was significantly lower than with glargine.

Conclusion

Our results suggest that basal insulin with either degludec or glargine decreases the incidence of post-breakfast hyperglycemia accompanied by decreasing the post-breakfast PI/CPR ratio and fasting FFA levels in patients with type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Monnier L, Lapinski H, Colette C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA(1c). Diabetes Care. 2003;26:881–5.

    Article  Google Scholar 

  2. Kikuchi K, Nezu U, Shirakawa J, Sato K, Togashi Y, Kikuchi T, Aoki K, Ito Y, Kimura M, Terauchi Y. Correlations of fasting and postprandial blood glucose increments to the overall diurnal hyperglycemic status in type 2 diabetic patients: variations with levels of HbA1c. Endocr J. 2010;57:259–66.

    Article  Google Scholar 

  3. American Diabetes Association. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2020. Diabetes Care. 2020;43:S98–110.

    Article  Google Scholar 

  4. Porcellati F, Lucidi P, Cioli P, Candeloro P, Marinelli Andreoli A, Marzotti S, Ambrogi M, Bolli GB, Fanelli CG. Pharmacokinetics and pharmacodynamics of insulin glargine given in the evening as compared with in the morning in type 2 diabetes. Diabetes Care. 2015;38:503–12.

    Article  CAS  Google Scholar 

  5. Wang Z, Hedrington MS, Gogitidze Joy N, Briscoe VJ, Richardson MA, Younk L, Nicholson W, Tate DB, Davis SN. Dose-response effects of insulin glargine in type 2 diabetes. Diabetes Care. 2010;33:1555–60.

    Article  CAS  Google Scholar 

  6. Ahmed Saad, Chiara Dalla Man, Debashis K Nandy, James A Levine, Adil E Bharucha, Robert A Rizza, Rita Basu, Rickey E Carter, Claudio Cobelli, Yogish C Kudva, Ananda Bas. Diurnal Pattern to Insulin Secretion and Insulin Action in Healthy Individuals. Diabetes. 2012; 61:2691-700.

  7. Janka HU, Plewe G, Riddle MC, Kliebe-Frisch C, Schweitzer MA, Yki-Järvinen H. Comparison of basal insulin added to oral agents versus twice-daily premixed insulin as initial insulin therapy for type 2 diabetes. Diabetes Care. 2005;28:254–9.

    Article  CAS  Google Scholar 

  8. Riddle M, Umpierrez G, DiGenio A, Zhou R, Rosenstock J. Contributions of basal and postprandial hyperglycemia over a wide range of A1C levels before and after treatment intensification in type 2 diabetes. Diabetes Care. 2011;34:2508–14.

    Article  CAS  Google Scholar 

  9. Jonassen I, Havelund S, Hoeg-Jensen T, Steensgaard DB, Wahlund PO, Ribel U. Design of the novel protraction mechanism of insulin degludec, an ultralong acting basal insulin. Pharm Res. 2012;29:2104–14.

    Article  CAS  Google Scholar 

  10. Atkin Stephen, Javed Zeeshan, Fulcher Gregory. Insulin degludec and insulin aspart: novel insulins for the management of diabetes mellitus. Ther Adv Chronic Dis. 2015;6:375–88.

    Article  CAS  Google Scholar 

  11. Heise T, Hoevelmann U, Nosek L, Hermanski L, Bøttcher SG, Haahr H. Comparison of the Pharmacokinetic and Pharmacodynamic Profiles of Insulin Degludec and Insulin Glargine. Expert Opin Drug Metab Toxicol. 2015;11:1193–201.

    Article  CAS  Google Scholar 

  12. Monnier L, Colette C, Dunseath GJ, Owens DR. The loss of postprandial glycemic control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care. 2007;30:263–9.

    Article  Google Scholar 

  13. Shimoda Seiya, Okubo Mina, Koga Kotaro, Sekigami Taiji, Kawashima Junji, Kukidome Daisuke, Igata Motoyuki, Ishii Norio, Shimakawa Akiko, Matsumura Takeshi, Motoshima Hiroyuki, Furukawa Noboru, Nishida Kenro, Araki Eiichi. Insulin requirement profiles in japanese hospitalized subjects with type 2 diabetes treated with basal-bolus insulin therapy. Endocr J. 2015;62:209–16.

    Article  CAS  Google Scholar 

  14. Bailey T, Bode BW, Christiansen MP, Klaff LJ, Alva S. The performance and usability of a factory-calibrated flash glucose monitoring system. Diabetes Technol Ther. 2015;17:787–94.

    Article  CAS  Google Scholar 

  15. Yoshiki K, Tomoyuki K, Rie N, Kahori W, Taku T, Fumihiro O, Masaru T, Takafumi A, Masayuki M, Jun-ichiro M, Mitsuyoshi NJ. Comparison of numerical accuracy of personal and professional continuous glucose monitors. Japan Diab. 2015;58:715–20.

    Google Scholar 

  16. Basu A, Basu R, Shah P, Vella A, Johnson CM, Nair KS, Jensen MD, Schwenk WF, Rizza RA. Effects of type 2 diabetes on the ability of insulin and glucose to regulate splanchnic and muscle glucose metabolism: evidence for a defect in hepatic glucokinase activity. Diabetes. 2000;49:272–83.

    Article  CAS  Google Scholar 

  17. Kim NH, Kim DL, Choi KM, Baik SH, Choi DS. Serum insulin, proinsulin and proinsulin/insulin ratio in type 2 diabetic patients: as an index of beta-cell function or insulin resistance. Korean J Intern Med. 2000;15:195–201.

    Article  CAS  Google Scholar 

  18. Vangipurapu J, Stančáková A, Kuulasmaa T, Kuusisto J, Laakso M. Both fasting and glucose-stimulated proinsulin levels predict hyperglycemia and incident type 2 diabetes: a population-based study of 9,396 Finnish men. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0124028.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pfützner A, Kunt T, Hohberg C, Mondok A, Pahler S, Konrad T, Lübben G, Forst T. Fasting intact proinsulin is a highly specific predictor of insulin resistance in type 2 diabetes. Diabetes Care. 2004;27:682–7.

    Article  Google Scholar 

  20. Fritsche A, Madaus A, Stefan N, Tschritter O, Maerker E, Teigeler A, Häring H, Stumvoll M. Relationships among age, proinsulin conversion, and beta-cell function in nondiabetic humans. Diabetes. 2002;51:S234–9.

    Article  CAS  Google Scholar 

  21. Alarcon C, Boland BB, Uchizono Y, Moore PC, Peterson B, Rajan S, Rhodes OS, Noske AB, Haataja L, Arvan P, Marsh BJ, Austin J, Rhodes CJ. Pancreatic β-cell adaptive plasticity in obesity increases insulin production but adversely affects secretory function. Diabetes. 2016;65:438–50.

    Article  CAS  Google Scholar 

  22. Laedtke T, Kjems L, Pørksen N, Schmitz O, Veldhuis J, Kao PC, Butler PC. Overnight inhibition of insulin secretion restores pulsatility and proinsulin/insulin ratio in type 2 diabetes. Am J Physiol Endocrinol Metab. 2000;279:E520–8.

    Article  CAS  Google Scholar 

  23. Ohta A, Kato H, Murayama K, Hashimoto E, Murakami M, Nishine A, Ohshige T, Sada Y, Asai S, Kawata T, Nagai Y, Katabami T, Tanaka Y. Effect of insulin glargine on endogenous insulin secretion and beta-cell function in Japanese type 2 diabetic patients using oral antidiabetic drugs. Endocr J. 2014;61:13–8.

    Article  CAS  Google Scholar 

  24. Ritzel RA, Hansen JB, Veldhuis JD, Butler PC. Induction of beta-cell rest glucose. J Clin Endocrinol Metab. 2004;89:795–805.

    Article  CAS  Google Scholar 

  25. Rizzo MA, Magnuson MA, Drain PF, Piston DW. A functional link between glucokinase binding to insulin granules and conformational alterations in response to glucose and insulin. J Biol Chem. 2002;277:34168–75.

    Article  CAS  Google Scholar 

  26. Fridlyand LE, Philipson LH. Does the glucose-dependent insulin secretion mechanism itself cause oxidative stress in pancreatic beta-cells? Diabetes. 2004;53:1942–8.

    Article  CAS  Google Scholar 

  27. Bravi MC, Armiento A, Laurenti O, et al. Insulin decreases intracellular oxidative stress in patients with type 2 diabetes mellitus. Metabolism. 2006;55:691–5.

    Article  CAS  Google Scholar 

  28. Reaven GM, Hollenbeck C, Jeng CY, Wu MS, Chen YD. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes. 1988;37:1020–124.

    Article  CAS  Google Scholar 

  29. Hawkins M, Gabriely I, Wozniak R, Reddy K, Rossetti L, Shamoon H. Glycemic control determines hepatic and peripheral glucose effectiveness in type 2 diabetic subjects. Diabetes. 2002;51:2179–89.

    Article  CAS  Google Scholar 

  30. Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev. 2002;23:201–29.

    Article  CAS  Google Scholar 

  31. Shah P, Vella A, Basu A, Basu R, Adkins A, Schwenk WF, Johnson CM, Nair KS, Jensen MD, Rizza RA. Elevated free fatty acids impair glucose metabolism in women: decreased stimulation of muscle glucose uptake and suppression of splanchnic glucose production during combined hyperinsulinemia and hyperglycemia. Diabetes. 2003;52:38–42.

    Article  CAS  Google Scholar 

  32. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000;106:171–6.

    Article  CAS  Google Scholar 

  33. McGarry JD. Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes. 2002;51:7–18.

    Article  CAS  Google Scholar 

  34. Bajaj M, Pratipanawatr T, Berria R, Pratipanawatr W, Kashyap S, Cusi K, Mandarino L, DeFronzo RA. Free fatty acids reduce splanchnic and peripheral glucose uptake in patients with type 2 diabetes. Diabetes. 2002;51:3043–8.

    Article  CAS  Google Scholar 

  35. Bachmann OP, Dahl DB, Brechtel K, Machann J, Haap M, Maier T, Loviscach M, Stumvoll M, Claussen CD, Schick F, Häring HU, Jacob S. Effects of intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with insulin sensitivity in humans. Diabetes. 2001;50:2579–84.

    Article  CAS  Google Scholar 

  36. Lam TK, Yoshii H, Haber CA, Bogdanovic E, Lam L, Fantus IG, Giacca A. Free fatty acid-induced hepatic insulin resistance: a potential role for protein kinase C-delta. Am J Physiol Endocrinol Metab. 2002;283:E682–91.

    Article  CAS  Google Scholar 

  37. Kim JK, Kim YJ, Fillmore JJ, Chen Y, Moore I, Lee J, Yuan M, Li ZW, Karin M, Perret P, Shoelson SE, Shulman GI. Prevention of fat-induced insulin resistance by salicylate. J Clin Invest. 2001;108:437–46.

    Article  CAS  Google Scholar 

  38. Shulman GI. Unraveling the cellular mechanism of insulin resistance in humans: new insights from magnetic resonance spectroscopy. Physiology (Bethesda). 2004;19:183–90.

    CAS  PubMed  Google Scholar 

  39. Hawkins M, Tonelli J, Kishore P, Stein D, Ragucci E, Gitig A, Reddy K. Contribution of elevated free fatty acid levels to the lack of glucose effectiveness in type 2 diabetes. Diabetes. 2003;52:2748–58.

    Article  CAS  Google Scholar 

  40. Vora J, Christensen T, Rana A, Bain SC. Insulin degludec versus insulin glargine in type 1 and type 2 diabetes mellitus: a meta-analysis of endpoints in phase 3a trials. Diabetes Ther. 2014;5:435–46.

    Article  CAS  Google Scholar 

  41. Jakubowicz D, Wainstein J, Ahren B, Landau Z, Bar-Dayan Y, Froy O. Fasting until noon triggers increased postprandial hyperglycemia and impaired insulin response after lunch and dinner in individuals with type 2 diabetes: a randomized clinical trial. Diabetes Care. 2015;38:1820–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Koriyama.

Ethics declarations

Conflict of interest

Yoshihiko Nishio has received honoraria for scientific lectures from Eli Lilly Japan, Sanofi, and Novo Nordisk Pharma; and received grants/research support from Novo Nordisk Pharma. Kazuma Ogiso, Nobuyuki Koriyama, Takahiko Obo and Akinori Tokito have nothing to disclose.

Human rights statement

All the procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (National Hospital Organization Kagoshima Medical Center, Ethics Committee, date of approval: 7 May 2015, approval no. 27-6) and with the Helsinki Declaration of 1964 and later versions.

Informed consent

All participants provided written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 37 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogiso, K., Koriyama, N., Obo, T. et al. Basal insulin ameliorates post-breakfast hyperglycemia via suppression of post-breakfast proinsulin/C-peptide ratio and fasting serum free fatty acid levels in patients with type 2 diabetes. Diabetol Int 12, 161–170 (2021). https://doi.org/10.1007/s13340-020-00457-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-020-00457-3

Keywords

Navigation