Skip to main content

Advertisement

Log in

Macrophage infiltration and cytokine release in adipose tissue: angiogenesis or inflammation?

  • Review article
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

The observation that obese adipose tissue was infiltrated by macrophages triggered the concept that type 2 diabetes is a low-grade inflammatory disease. In this review, we re-evaluate the role of macrophage infiltration, TNFα secretion and IKKβ/JNK signalling in insulin resistance, and put forward the hypothesis that these intermediates are important mediators of adipose tissue angiogenesis. Expansion of adipose tissue vasculature is essential to support adipose tissue growth during development and adipose tissue expansion in adulthood. We propose that a major role of so-called pro-inflammatory adipokines is to stimulate adipose tissue angiogenesis to support the nutrient requirements of expanding fat depots. Inhibition of angiogenesis overrides insulin resistance and obesity not by blocking the peripheral effects of the inflammatory pathway on insulin resistance, but rather by central effects on food intake. This unveils a possible feedback loop involving adipose angiogenesis and central regulation of food intake that is independent of a classical immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ferrannini E, et al. Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR). J Clin Invest. 1997;100(5):1166–73.

    Article  CAS  PubMed  Google Scholar 

  2. Robbins DC, et al. Familial partial lipodystrophy: complications of obesity in the non-obese? Metabolism. 1982;31(5):445–52.

    Article  CAS  PubMed  Google Scholar 

  3. Kim JY, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest. 2007;117(9):2621–37.

    Article  CAS  PubMed  Google Scholar 

  4. Mori Y, et al. Effect of troglitazone on body fat distribution in type 2 diabetic patients. Diabetes Care. 1999;22(6):908–12.

    Article  CAS  PubMed  Google Scholar 

  5. Tan CY, Vidal-Puig A. Adipose tissue expandability: the metabolic problems of obesity may arise from the inability to become more obese. Biochem Soc Trans. 2008;36(Pt 5):935–40.

    Article  CAS  PubMed  Google Scholar 

  6. Bjorntorp P. “Portal” adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis. 1990;10(4):493–6.

    CAS  PubMed  Google Scholar 

  7. Kissebah AH, et al. Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab. 1982;54(2):254–60.

    Article  CAS  PubMed  Google Scholar 

  8. Nielsen S, et al. Splanchnic lipolysis in human obesity. J Clin Invest. 2004;113(11):1582–8.

    CAS  PubMed  Google Scholar 

  9. Ravussin E, Smith SR. Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Ann N Y Acad Sci. 2002;967:363–78.

    Article  CAS  PubMed  Google Scholar 

  10. Carey DG, et al. Effect of rosiglitazone on insulin sensitivity and body composition in type 2 diabetic patients [corrected]. Obes Res. 2002;10(10):1008–15.

    Article  CAS  PubMed  Google Scholar 

  11. Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol. 2009;316(2):129–39.

    Google Scholar 

  12. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91.

    Article  CAS  PubMed  Google Scholar 

  13. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116(7):1793–801.

    Article  CAS  PubMed  Google Scholar 

  14. Halaas JL, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995;269(5223):543–6.

    Article  CAS  PubMed  Google Scholar 

  15. Reitman ML, et al. Transgenic mice lacking white fat: models for understanding human lipoatrophic diabetes. Ann N Y Acad Sci. 1999;892:289–96.

    Article  CAS  PubMed  Google Scholar 

  16. Shimomura I, et al. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature. 1999;401(6748):73–6.

    Article  CAS  PubMed  Google Scholar 

  17. Kim JK, et al. Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J Biol Chem. 2000;275(12):8456–60.

    Article  CAS  PubMed  Google Scholar 

  18. Kolonin MG, et al. Reversal of obesity by targeted ablation of adipose tissue. Nat Med. 2004;10(6):625–32.

    Article  CAS  PubMed  Google Scholar 

  19. Rupnick MA, et al. Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci USA. 2002;99(16):10730–5.

    Article  CAS  PubMed  Google Scholar 

  20. Brakenhielm E, et al. Angiogenesis inhibitor, TNP-470, prevents diet-induced and genetic obesity in mice. Circ Res. 2004;94(12):1579–88.

    Article  CAS  PubMed  Google Scholar 

  21. Kim DH, Woods SC, Seeley RJ. Peptide designed to elicit apoptosis in adipose tissue endothelium reduces food intake and body weight. Diabetes. 2010;59(4):907–15.

    Google Scholar 

  22. Crandall DL, Hausman GJ, Kral JG. A review of the microcirculation of adipose, and angiogenic perspectives. Microcirculation. 1997;4(2):211–32.

    Article  CAS  PubMed  Google Scholar 

  23. Wosnitza M, et al. Plasticity of human adipose stem cells to perform adipogenic and endothelial differentiation. Differentiation. 2007;75(1):12–23.

    Article  CAS  PubMed  Google Scholar 

  24. Rehman J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1292–8.

    Article  PubMed  Google Scholar 

  25. Hutley LJ, et al. Human adipose tissue endothelial cells promote preadipocyte proliferation. Am J Physiol Endocrinol Metab. 2001;281(5):E1037–44.

    CAS  PubMed  Google Scholar 

  26. Slavin BG, Ballard KW. Morphological studies on the adrenergic innervation of white adipose tissue. Anat Rec. 1978;191(3):377–89.

    Article  CAS  PubMed  Google Scholar 

  27. Bartness TJ, Bamshad M. Innervation of mammalian white adipose tissue: implications for the regulation of total body fat. Am J Physiol. 1998;275(5 Pt 2):R1399–411.

    CAS  PubMed  Google Scholar 

  28. Leibovich SJ, et al. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature. 1987;329(6140):630–2.

    Article  CAS  PubMed  Google Scholar 

  29. Sunderkotter C, et al. Macrophages and angiogenesis. J Leukoc Biol. 1994;55(3):410–22.

    CAS  PubMed  Google Scholar 

  30. Uchida C, et al. JNK as a positive regulator of angiogenic potential in endothelial cells. Cell Biol Int. 2008;32(7):769–76.

    Article  CAS  PubMed  Google Scholar 

  31. Ennis BW, et al. Inhibition of tumor growth, angiogenesis, and tumor cell proliferation by a small molecule inhibitor of c-Jun N-terminal kinase. J Pharmacol Exp Ther. 2005;313(1):325–32.

    Article  CAS  PubMed  Google Scholar 

  32. Lee DF, et al. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell. 2007;130(3):440–55.

    Article  CAS  PubMed  Google Scholar 

  33. DeBusk LM, Massion PP, Lin PC. IkappaB kinase-alpha regulates endothelial cell motility and tumor angiogenesis. Cancer Res. 2008;68(24):10223–8.

    Article  CAS  PubMed  Google Scholar 

  34. Lee DF, Hung MC. All roads lead to mTOR: integrating inflammation and tumor angiogenesis. Cell Cycle. 2007;6(24):3011–4.

    Article  CAS  PubMed  Google Scholar 

  35. Yuan M, et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science. 2001;293(5535):1673–7.

    Article  CAS  PubMed  Google Scholar 

  36. Arkan MC, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med. 2005;11(2):191–8.

    Article  CAS  PubMed  Google Scholar 

  37. Lee YH, et al. c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem. 2003;278(5):2896–902.

    Article  CAS  PubMed  Google Scholar 

  38. Hirosumi J, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333–6.

    Article  CAS  PubMed  Google Scholar 

  39. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115(5):1111–9.

    CAS  PubMed  Google Scholar 

  40. Weisberg SP, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.

    CAS  PubMed  Google Scholar 

  41. Xu H, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30.

    CAS  PubMed  Google Scholar 

  42. Kim JK, et al. Prevention of fat-induced insulin resistance by salicylate. J Clin Invest. 2001;108(3):437–46.

    CAS  PubMed  Google Scholar 

  43. Ross R, et al. Localization of PDGF-B protein in macrophages in all phases of atherogenesis. Science. 1990;248(4958):1009–12.

    Article  CAS  PubMed  Google Scholar 

  44. McLaren J, et al. Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids. J Clin Invest. 1996;98(2):482–9.

    Article  CAS  PubMed  Google Scholar 

  45. Chung ES, et al. Contribution of macrophages to angiogenesis induced by vascular endothelial growth factor receptor-3-specific ligands. Am J Pathol. 2009;175(5):1984–92.

    Article  PubMed  Google Scholar 

  46. Pang C, et al. Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. Am J Physiol Endocrinol Metab. 2008;295(2):E313–22.

    Article  CAS  PubMed  Google Scholar 

  47. Sainson RC, et al. TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood. 2008;111(10):4997–5007.

    Article  CAS  PubMed  Google Scholar 

  48. Niu J, et al. Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). J Biol Chem. 2008;283(21):14542–51.

    Article  CAS  PubMed  Google Scholar 

  49. Chesney J, et al. An essential role for macrophage migration inhibitory factor (MIF) in angiogenesis and the growth of a murine lymphoma. Mol Med. 1999;5(3):181–91.

    CAS  PubMed  Google Scholar 

  50. Fan Y, et al. Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro. J Cereb Blood Flow Metab. 2008;28(1):90–8.

    Article  CAS  PubMed  Google Scholar 

  51. Kanda H, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116(6):1494–505.

    Article  CAS  PubMed  Google Scholar 

  52. Cid MC, et al. Identification of haptoglobin as an angiogenic factor in sera from patients with systemic vasculitis. J Clin Invest. 1993;91(3):977–85.

    Article  CAS  PubMed  Google Scholar 

  53. Park SJ, et al. Enhancement of angiogenic and vasculogenic potential of endothelial progenitor cells by haptoglobin. FEBS Lett. 2009;583(19):3235–40.

    Article  CAS  PubMed  Google Scholar 

  54. Irmak S, et al. Pro-angiogenic properties of orosomucoid (ORM). Exp Cell Res. 2009;315(18):3201–9.

    Article  CAS  PubMed  Google Scholar 

  55. Phillips GD, et al. Macrophage colony-stimulating factor induces indirect angiogenesis in vivo. Wound Repair Regen. 1993;1(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  56. Choy LN, Rosen BS, Spiegelman BM. Adipsin and an endogenous pathway of complement from adipose cells. J Biol Chem. 1992;267(18):12736–41.

    CAS  PubMed  Google Scholar 

  57. Rohrer B, et al. A targeted inhibitor of the alternative complement pathway reduces angiogenesis in a mouse model of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2009;50(7):3056–64.

    Article  PubMed  Google Scholar 

  58. Park HY, et al. Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp Mol Med. 2001;33(2):95–102.

    CAS  PubMed  Google Scholar 

  59. Anagnostoulis S, et al. Human leptin induces angiogenesis in vivo. Cytokine. 2008;42(3):353–7.

    Article  CAS  PubMed  Google Scholar 

  60. Kobayashi H, et al. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ Res. 2004;94(4):e27–31.

    Article  CAS  PubMed  Google Scholar 

  61. Shibata R, et al. Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of amp-activated protein kinase signaling. J Biol Chem. 2004;279(27):28670–4.

    Article  CAS  PubMed  Google Scholar 

  62. Ouchi N, et al. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J Biol Chem. 2004;279(2):1304–9.

    Article  CAS  PubMed  Google Scholar 

  63. Liapakis IE, et al. Recombinant leptin administration improves early angiogenesis in full-thickness skin flaps: an experimental study. In Vivo. 2008;22(2):247–52.

    CAS  PubMed  Google Scholar 

  64. Dobson DE, et al. 1-Butyryl-glycerol: a novel angiogenesis factor secreted by differentiating adipocytes. Cell. 1990;61(2):223–30.

    Article  CAS  PubMed  Google Scholar 

  65. Silverman KJ, et al. Angiogenic activity of adipose tissue. Biochem Biophys Res Commun. 1988;153(1):347–52.

    Article  CAS  PubMed  Google Scholar 

  66. Hotamisligil GS, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996;271(5249):665–8.

    Article  CAS  PubMed  Google Scholar 

  67. Gao Z, et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J Biol Chem. 2002;277(50):48115–21.

    Article  CAS  PubMed  Google Scholar 

  68. Aguirre V, et al. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 2002;277(2):1531–7.

    Article  CAS  PubMed  Google Scholar 

  69. Aguirre V, et al. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem. 2000;275(12):9047–54.

    Article  CAS  PubMed  Google Scholar 

  70. Kanety H, et al. Tumor necrosis factor alpha-induced phosphorylation of insulin receptor substrate-1 (IRS-1). Possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1. J Biol Chem. 1995;270(40):23780–4.

    Article  CAS  PubMed  Google Scholar 

  71. Pederson TM, Kramer DL, Rondinone CM. Serine/threonine phosphorylation of IRS-1 triggers its degradation: possible regulation by tyrosine phosphorylation. Diabetes. 2001;50(1):24–31.

    Article  CAS  PubMed  Google Scholar 

  72. Hoehn KL, et al. IRS1-independent defects define major nodes of insulin resistance. Cell Metab. 2008;7(5):421–33.

    Article  CAS  PubMed  Google Scholar 

  73. Prins JB, O’Rahilly S. Regulation of adipose cell number in man. Clin Sci (Lond). 1997;92(1):3–11.

    CAS  Google Scholar 

  74. Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006;7(8):589–600.

    Article  CAS  PubMed  Google Scholar 

  75. Voros G, et al. Modulation of angiogenesis during adipose tissue development in murine models of obesity. Endocrinology. 2005;146(10):4545–54.

    Article  CAS  PubMed  Google Scholar 

  76. Silha JV, et al. Angiogenic factors are elevated in overweight and obese individuals. Int J Obes (Lond). 2005;29(11):1308–14.

    Article  CAS  Google Scholar 

  77. Miyazawa-Hoshimoto S, et al. Roles of degree of fat deposition and its localization on VEGF expression in adipocytes. Am J Physiol Endocrinol Metab. 2005;288(6):E1128–36.

    Article  CAS  PubMed  Google Scholar 

  78. Marques BG, Hausman DB, Martin RJ. Association of fat cell size and paracrine growth factors in development of hyperplastic obesity. Am J Physiol. 1998;275(6 Pt 2):R1898–908.

    CAS  PubMed  Google Scholar 

  79. Borthwick GM, et al. Therapeutic levels of aspirin and salicylate directly inhibit a model of angiogenesis through a Cox-independent mechanism. FASEB J. 2006;20(12):2009–16.

    Article  CAS  PubMed  Google Scholar 

  80. Sabio G, et al. Role of the hypothalamic-pituitary-thyroid axis in metabolic regulation by JNK1. Genes Dev. 2010;24(3):256–64.

    Google Scholar 

  81. Jones GC, Riley GP. ADAMTS proteinases: a multi-domain multi-functional family with roles in extracellular matrix turnover and arthritis. Arthritis Res Ther. 2005;7(4):160–9.

    Article  PubMed  Google Scholar 

  82. Hebbard LW, et al. T-cadherin supports angiogenesis and adiponectin association with the vasculature in a mouse mammary tumor model. Cancer Res. 2008;68(5):1407–16.

    Article  CAS  PubMed  Google Scholar 

  83. Im E, Venkatakrishnan A, Kazlauskas A. Cathepsin B regulates the intrinsic angiogenic threshold of endothelial cells. Mol Biol Cell. 2005;16(8):3488–500.

    Article  CAS  PubMed  Google Scholar 

  84. Berchem G, et al. Cathepsin-D affects multiple tumor progression steps in vivo: proliferation, angiogenesis and apoptosis. Oncogene. 2002;21(38):5951–5.

    Article  CAS  PubMed  Google Scholar 

  85. Chu FF, Olden K. The expression of ceruloplasmin an angiogenic glycoprotein, by mouse embryonic fibroblasts. Biochem Biophys Res Commun. 1985;126(1):15–24.

    Article  CAS  PubMed  Google Scholar 

  86. Girardi G, et al. Complement activation induces dysregulation of angiogenic factors and causes fetal loss. Am J Reprod Immunol. 2006;55(6):396–7.

    Article  Google Scholar 

  87. Rohrer B, et al. A targeted inhibitor of the alternative complement pathway reduces angiogenesis in a mouse model of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2009;50(7):3056–64.

    Article  PubMed  Google Scholar 

  88. Pohle T, et al. Expression of decorin and biglycan in rat gastric tissue: effects of ulceration and basic fibroblast growth factor. Scand J Gastroenterol. 2001;36(7):683–9.

    Article  CAS  PubMed  Google Scholar 

  89. Braghetta P, et al. Expression of the EMILIN-1 gene during mouse development. Matrix Biol. 2002;21(7):603–9.

    Article  CAS  PubMed  Google Scholar 

  90. Huang SM, et al. Modulation of radiation response and tumor-induced angiogenesis after epidermal growth factor receptor inhibition by ZD1839 (Iressa). Cancer Res. 2002;62(15):4300–6.

    CAS  PubMed  Google Scholar 

  91. Han Z, et al. Extracellular matrix protein 1 (ECM1) has angiogenic properties and is expressed by breast tumor cells. FASEB J. 2001;15(6):988–94.

    Article  CAS  PubMed  Google Scholar 

  92. Nicosia RF, Bonanno E, Smith M. Fibronectin promotes the elongation of microvessels during angiogenesis in vitro. J Cell Physiol. 1993;154(3):654–61.

    Article  CAS  PubMed  Google Scholar 

  93. Hayashi I, et al. Suppressed angiogenesis in kininogen-deficiencies. Lab Invest. 2002;82(7):871–80.

    CAS  PubMed  Google Scholar 

  94. Song M, Cho SY. CD14 acts as an angiogenic factor by inducing basic fibroblast growth factor (bFGF). Bull Korean Chem Soc. 2007;28(9):1613–4.

    Article  CAS  Google Scholar 

  95. Nicosia RF, et al. Modulation of angiogenesis in vitro by laminin–entactin complex. Dev Biol. 1994;164(1):197–206.

    Article  CAS  PubMed  Google Scholar 

  96. Hakuno D, et al. The potent angiogenic factor periostin accelerates degeneration and sclerosis of the cardiac valve complex. In: Proceeding of the 25th annual meeting of the ISHR, Japanese Section, December 5–6, 2008. J Mol Cell Cardiol. 2008;S8.

  97. Isogai C, et al. Plasminogen activator inhibitor-1 promotes angiogenesis by stimulating endothelial cell migration toward fibronectin. Cancer Res. 2001;61(14):5587–94.

    CAS  PubMed  Google Scholar 

  98. Canfield AE, Schor AM. Evidence that tenascin and thrombospondin-1 modulate sprouting of endothelial cells. J Cell Sci. 1995;108(Pt 2):797–809.

    CAS  PubMed  Google Scholar 

  99. Asplin IR, et al. Differential regulation of the fibroblast growth factor (FGF) family by alpha(2)-macroglobulin: evidence for selective modulation of FGF-2-induced angiogenesis. Blood. 2001;97(11):3450–7.

    Article  CAS  PubMed  Google Scholar 

  100. Fabre JE, et al. Tissue inhibition of angiotensin-converting enzyme activity stimulates angiogenesis in vivo. Circulation. 1999;99(23):3043–9.

    CAS  PubMed  Google Scholar 

  101. Cameron NE, Cotter MA, Robertson S. Angiotensin converting enzyme inhibition prevents development of muscle and nerve dysfunction and stimulates angiogenesis in streptozotocin-diabetic rats. Diabetologia. 1992;35(1):12–8.

    Article  CAS  PubMed  Google Scholar 

  102. Brand M, et al. Angiotensinogen impairs angiogenesis in the chick chorioallantoic membrane. J Mol Med. 2007;85(5):451–60.

    Article  CAS  PubMed  Google Scholar 

  103. O’Reilly MS, et al. Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science. 1999;285(5435):1926–8.

    Article  PubMed  Google Scholar 

  104. Yu P, et al. Beta2-glycoprotein I inhibits vascular endothelial growth factor and basic fibroblast growth factor induced angiogenesis through its amino terminal domain. J Thromb Haemost. 2008;6(7):1215–23.

    Article  CAS  PubMed  Google Scholar 

  105. Rahimi N, Kazlauskas A. A role for cadherin-5 in regulation of vascular endothelial growth factor receptor 2 activity in endothelial cells. Mol Biol Cell. 1999;10(10):3401–7.

    CAS  PubMed  Google Scholar 

  106. Hosokawa H, et al. Vascular endothelial cells that express dystroglycan are involved in angiogenesis. J Cell Sci. 2002;115(Pt 7):1487–96.

    CAS  PubMed  Google Scholar 

  107. Ushio-Fukai M. Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc Res. 2006;71(2):226–35.

    Article  CAS  PubMed  Google Scholar 

  108. Akakura N, et al. The COOH-terminal globular domain of fibrinogen gamma chain suppresses angiogenesis and tumor growth. Cancer Res. 2006;66(19):9691–7.

    Article  CAS  PubMed  Google Scholar 

  109. Ikenaka Y, et al. Tissue inhibitor of metalloproteinases-1 (TIMP-1) inhibits tumor growth and angiogenesis in the TIMP-1 transgenic mouse model. Int J Cancer. 2003;105(3):340–6.

    Article  CAS  PubMed  Google Scholar 

  110. Tong Z, et al. Neutrophil gelatinase-associated lipocalin: a novel suppressor of invasion and angiogenesis in pancreatic cancer. Cancer Res. 2008;68(15):6100–8.

    Article  CAS  PubMed  Google Scholar 

  111. Rusnati M, et al. Selective recognition of fibroblast growth factor-2 by the long pentraxin PTX3 inhibits angiogenesis. Blood. 2004;104(1):92–9.

    Article  CAS  PubMed  Google Scholar 

  112. Apte RS, et al. Stimulation of neovascularization by the anti-angiogenic factor PEDF. Invest Ophthalmol Vis Sci. 2004;45(12):4491–7.

    Article  PubMed  Google Scholar 

  113. Gao G, et al. Kallikrein-binding protein inhibits retinal neovascularization and decreases vascular leakage. Diabetologia. 2003;46(5):689–98.

    CAS  PubMed  Google Scholar 

  114. Chlenski A, et al. SPARC is a key Schwannian-derived inhibitor controlling neuroblastoma tumor angiogenesis. Cancer Res. 2002;62(24):7357–63.

    CAS  PubMed  Google Scholar 

  115. Chetty C, et al. Tissue inhibitor of metalloproteinase 3 suppresses tumor angiogenesis in matrix metalloproteinase 2-down-regulated lung cancer. Cancer Res. 2008;68(12):4736–45.

    Article  CAS  PubMed  Google Scholar 

  116. Kang SY, et al. Prosaposin inhibits tumor metastasis via paracrine and endocrine stimulation of stromal p53 and Tsp-1. Proc Natl Acad Sci USA. 2009;106(29):12115–20.

    Article  CAS  PubMed  Google Scholar 

  117. Tolsma SS, et al. Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol. 1993;122(2):497–511.

    Article  CAS  PubMed  Google Scholar 

  118. Volpert OV, et al. Inhibition of angiogenesis by thrombospondin-2. Biochem Biophys Res Commun. 1995;217(1):326–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. James.

Additional information

L. E. Wu and S. L. Hocking contributed equally to this work.

About this article

Cite this article

Wu, L.E., Hocking, S.L. & James, D.E. Macrophage infiltration and cytokine release in adipose tissue: angiogenesis or inflammation?. Diabetol Int 1, 26–34 (2010). https://doi.org/10.1007/s13340-010-0003-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-010-0003-x

Keywords