Skip to main content
Log in

Solutions of a discrete integrable hierarchy by straightening out of its continuous and discrete constrained flows

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

From the isospectral problem which we design, a \((1+1)\)-dimensional discrete integrable hierarchy is generated with the help of a loop algebra. After that we get a differential–difference integrable system with two potential functions. Finally, the algebro-geometric solution of the integrable system is obtained by straightening out the continuous and discrete flow and utilizing the Riemann–Jacobi inversion theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dong, H.H., Guo, B.Y., Yin, B.S.: Generalized fractional supertrace identity for hamiltonian structure of NLS-MKdV hierarchy with self-consistent sources. Anal. Math. Phys. 6(2), 199–209 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ma, W.X., Fuchsteiner, B.: Algebraic structure of discrete zero curvature equations and master symmetries of discrete evolution equations. J. Math. Phys. 40, 2400–2418 (1990)

    Article  MathSciNet  Google Scholar 

  3. Zhao, Q.L., Li, X.Y., Liu, F.S.: Two integrable lattice hierarchies and their respective darboux transformations. Appl. Math. Comput. 219(10), 5693–5705 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Zhang, Y.F., Rui, W.J.: A few continuous and discrete dynamical systems. Rep. Math. Phys. 78(1), 19–32 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhou, R., Ma, W.X.: Algebro-geometric solutions of the \((2+1)\)-dimensional Gardner equation. Nuovo Cimento B 115, 1419–1431 (2000)

    MathSciNet  Google Scholar 

  6. Ma, W.X.: Trigonal curves and algebro-geometric solutions to soliton hierarchies I. Proc. R. Soc. A Math. Phys. Eng. Sci. 473, 20170232 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ma, W.X.: Trigonal curves and algebro-geometric solutions to soliton hierarchies II. Proc. R. Soc. A Math. Phys. Eng. Sci. 473, 20170233 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ma, W.X., Xu, X.X.: A modified Toda spectral problem and its hierarchy of bi-Hamiltonian lattice equations. J. Phys. A Math. Gen. 37, 1323–1336 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, X.Z., Dong, H.H., Li, Y.X.: Some reductions from a Lax integrable system and their Hamiltonian structures. Appl. Math. Comput. 218(20), 10032–10039 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Li, X.Y., Li, Y.X., Yang, H.X.: Two families of Liouville integrable lattice equations. Appl. Math. Comput. 217(21), 8671–8682 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Yang, H.X., Du, J., Xu, X.X., Cui, J.P.: Hamiltonian and super-Hamiltonian systems of a hierarchy of soliton equations. Appl. Math. Comput. 217(4), 1497–1508 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Xu, X.X.: An integrable coupling hierarchy of the MKdV integrable systems, its Hamiltonian structure and corresponding nonisospectral integrable hierarchy. Appl. Math. Comput. 261(1), 344–353 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Ma, W.X., Xu, X., Zhang, Y.F.: Semidirect sums of Lie algebras and discrete integrable couplings. J. Math. Phys. 47, 053501 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhao, Q.L., Li, X.Y.: A Bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy. Anal. Math. Phys. 6(3), 237–254 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dong, H.H., Zhao, K., Yang, H.W., Li, Y.Q.: Generalised \((2+1)\)-dimensional super Mkdv hierarchy for integrable systems in soliton theory. East Asian J. Appl. Math. 5(3), 256–272 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feng, B.L., Zhang, Y.F., Dong, H.H.: A few integrable couplings of some integrable systems and \((2+1)\)-dimensional integrable hierarchies. Abstr. Appl. Anal. 2014, 932672 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Tang, Y.L., Fan, J.C.: A family of Liouville integrable lattice equations and its conservation laws. Appl. Math. Comput. 271(5), 1907–1912 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Dong, H.H., Zhang, Y., Zhang, X.E.: The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation. Commun. Nonlinear Sci. Numer. Simul. 36, 354–365 (2016)

    Article  MathSciNet  Google Scholar 

  19. Pickering, A., Zhu, Z.N.: New integrable lattice hierarchies. Phys. Lett. A 349, 439–445 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, Y.F., Zhang, X.Z.: Two kinds of discrete integrable hierarchies of evolution equations and some algebro-geometric solutions. Adv. Differ. Equ. 2017, 72 (2017)

    Article  MATH  Google Scholar 

  21. Xu, X.X., Zhang, Y.F.: A hierarchy of lax integrable lattice equations, liouville integrability and a new integrable symplectic map. Commun. Theor. J. Math. Phys. 41, 321–328 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ablowitz, M.J., segur, H.: Exact linearization of Painlev\(\acute{e}\) transcendent. Phys. Rev. Lett. 37, 1103–1106 (1997)

    Google Scholar 

  23. Toda, M.: Theory of Nonlinear Lattice. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  24. Tu, G.Z.: A trace identify and its applications to theory of discrete integrable systems. J. Math. Phys. 23, 3902–3922 (1990)

    Google Scholar 

  25. Cao, C.W., Ceng, X.G., Wu, Y.T.: From the special \(2+1\) Toda lattice to the Kadomtsev–Petviashvili equation. J. Math. Phys. 32, 8059–8078 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Geng, X.G., Dai, H.H.: Quasi-periodic solutions of some \(2+1\) dimensional discrete models. Physica A 319, 270–294 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Geng, X.G., Cao, C.W.: Quasi-periodic solutions of the \(2+1\) dimensional modified Korteweg–de Vrirs equation. Phys. Lett. A 261, 289–296 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dai, H.H., Geng, X.G.: Decomposition of a \(2+1\) dimensional Volterra type lattice and its quasi-periodic solutions. Chaos Solitons Fractals 18, 1031–1044 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhu, J.Y., Geng, X.G.: Algebro-geometric constructions of the \(2+1\) dimensional differential–difference equation. Phys. Lett. A 368, 464–469 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Geng, X.G., Dai, H.H.: Nonlinearization of the Lax pairs for discrete Ablowitz-Ladik hierarchy. J. Math. Anal. Appl. 327, 829–853 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Geng, X,G., Dai, H.H.: Quasi-periodic solutions for some \(2+1\)-dimensional discrete models. Physica A 319, 270–294 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Geng, X.G., Cao, C.W.: Quasi-periodic solutions of the \(2+1\) dimensional modified Korteweg–de Vries equation. Phys. Lett. A 261, 289–296 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dai, H.H., Geng, X.G.: Decomposition of a \(2+1\)-dimensional Volterra type lattice and its quasi-periodic solutions. Chaos Solitons Fractals 18, 1031–1044 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhu, J.Y., Geng, X.G.: Algebraic-geometric constructions of the \((2+1)\)-dimensional differential–difference equation. Phys. Lett. A 368, 464–469 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Geng, X.G., Dai, H.H.: Nonlinearization of the Lax pairs for discrete Ablowitz-Ladik hierarchy. J. Math. Anal. Appl. 327, 829–853 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nijhoff, F.W., Papageorgiou, V.G.: Similarity reductions of integrable lattices and dis- crete analogues of Painlev e II equations. Phys. Lett. A 153, 337–344 (1991)

    Article  MathSciNet  Google Scholar 

  37. Levi, D., Ragnisco, O., Rodriguez, M.A.: On non-isospectral flows, Painlevé equation, and symmetries of differential and difference equations. Theor. Math. Phys. 93, 1409–1414 (1993)

    Article  Google Scholar 

  38. Zhang, X.E., Chen, Y.: Rogue wave and a pair of resonance stripe solitons to a reduced \((3+1)\)-dimensional JimboCMiwa equation.pdf. Commun. Nonlinear Sci. Numer. Simul. 52, 24–31 (2017)

    Article  MathSciNet  Google Scholar 

  39. Zhang, X.E., Chen, Y.: Rogue wave and a pair of resonance stripe solitons to a reduced generalized \((3+1)\)-dimensional KP equation.pdf. arXiv:1610.09507v1 (2016)

  40. Cao, C.W., Geng, X.G., Wu, Y.T.: From the special \(2+1\) Toda lattice to the Kadomtsev–Petviashvili equation. J. Phys. Chem. A 32, 8059–8078 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Dong, H.H., Zhang, Y.F., Zhang, Y.F., Yin, B.S.: Generalized bilinear differential operators, binary bell polynomials, and exact periodic wave solution of Boiti-Leon-Manna-Pempinelli equation. Abstr. Appl. Anal. 2014, 738609 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, N., Xia, T.C.: A hierarchy of lattice soliton equations associated with a new discrete eigenvalue problem and Darboux transformations. Int. J. Nonlinear Sci. Numer. Simul. 16, 301–306 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yue, C., Xia, T.C.: Algebro-geometric solutions for the complex Sharma–Tasso–Olver hierarchy. J. Math. Phys. 55, 083511 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Fang, Y., Dong, H.H., Hou, Y.J., Kong, Y.: Frobenius integrable decompositions of nonlinear evolution equations with modified term. Appl. Math. Comput. 226, 435–440 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Ma, W.X.: Binary constrained flows and separation of variables for soliton equations. Aust. N. Z. Ind. Appl. Math. J. 44, 129–139 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the SDUST Research Fund (2014TDJH102) and completed with the support by National Natural Science Foundation of China (No. 61402265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanhe Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Dong, H. & Zhang, Y. Solutions of a discrete integrable hierarchy by straightening out of its continuous and discrete constrained flows. Anal.Math.Phys. 9, 465–481 (2019). https://doi.org/10.1007/s13324-018-0209-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-018-0209-9

Keywords

Navigation