Skip to main content
Log in

Intravenous prediction of human pharmacokinetic parameters for ketorolac, a non-steroidal anti-inflammatory agent, using allometry approach

  • Original Paper
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

The intravenous pharmacokinetics data of ketorolac in mice, rats, rabbits, dogs and monkeys were assembled from literature. The relationship between the main pharmacokinetic parameters [viz., volume of distribution (V d) and clearance (CL)] and body weight was studied across five mammalian species, using double-logarithmic plots to predict the human pharmacokinetic parameters of CL and V d using simple allometry or with correction factors [maximum life span potential (MLP), brain weight, CF1 (bile flow/liver weight) and CF2 (bile flow/body weight)]. The metabolism pattern, biotransformation pathways and the predominant urinary excretion of parent and the formed metabolites of ketorolac were found to be similar amongst mice, rats, rabbits, dogs, monkeys and humans, facilitating the scaling process. The human parameter value for V d was predicted by simple allometric equation: 0.2481W1.0549 (r 2 = 0.9217). The predicted V d value (21.92 L) is close to the reported value (17.5 L), whereas the CL was predicted by simple allometric approach or with standard correction factors viz., MLP, brain weight, CF1 and CF2. Best proximity CL value was obtained with MLP having allometric equation: 0.7126W1.3264 (r 2 = 0.9640). The outcome of this exercise suggests that allometric scaling with suitable correction factors could potentially be used to predict the human pharmacokinetic parameters of drugs belonging to non-steroidal anti-inflammatory drugs retrospectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahlawat P, Srinivas NR (2008a) Allometric prediction of the human pharmacokinetic parameters for naveglitazar. Eur J Drug Metab Pharmacokinet 33:187–190

    Article  PubMed  CAS  Google Scholar 

  • Ahlawat P, Srinivas NR (2008b) Interspecies scaling of a camptothecin analogue: human predictions for intravenous topotecan using animal data. Xenobiotica 38:1377–1385

    Article  PubMed  CAS  Google Scholar 

  • Ahlawat P, Srinivas NR (2009) Allometric scaling of a metabolically complex camptothecin analog: differences in scaling of irinotecan and its active metabolite, SN-38. Arzneimittelforschung 59:311–317

    PubMed  CAS  Google Scholar 

  • Bhamidipati RK, Dravid PV, Mullangi R, Srinivas NR (2004) Prediction of clinical pharmacokinetic parameters of linezolid using animal data by allometric scaling: applicability for the development of novel oxazolidinones. Xenobiotica 34:571–579

    Article  PubMed  CAS  Google Scholar 

  • Boxenbaum H (1982) Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokinet Biopharm 10:201–227

    Article  PubMed  CAS  Google Scholar 

  • Buckley MM, Brogden RN (1990) Ketorolac. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential. Drugs 39:86–109

    Google Scholar 

  • Emary WB, Toren PC, Mathews B, Huh K (1998) Disposition and metabolism of rifapentine, a rifamycin antibiotic, in mice, rats, and monkeys. Drug Metab Dispos 26:725–731

    PubMed  CAS  Google Scholar 

  • Guzmán A, Yuste F, Toscano RA, Young JM, Van Horn AR, Muchowski JM (1986) Absolute configuration of (-)-5-benzoyl-1, 2-dihydro-3H-pyrrolo[1, 2-alpha] gpyrrole-1-carboxylic acid, the active enantiomer of ketorolac. J Med Chem 29:589–591

    Article  PubMed  Google Scholar 

  • Hillier K (1981) Ketorolac. Drugs future 6:669–670

  • Hu TM, Hayton WL (2001) Allometric scaling of xenobiotic clearance: uncertainty versus universality. AAPS Pharm Sci 3:E29

    Article  CAS  Google Scholar 

  • Kumar VV, Srinivas NR (2008) Application of allometry principles for the prediction of human pharmacokinetic parameters for irbesartan, an AT1 receptor antagonist, from animal data. Eur J Drug Metab Pharmacokinet 33:247–252

    Article  PubMed  Google Scholar 

  • Laneuville O, Breuer DK, Dewitt DL, Hla T, Funk CD, Smith WL (1994) Differential inhibition of human prostaglandin endoperoxide H synthases-1 and -2 by nonsteroidal anti-inflammatory drugs. J Pharmacol Exp Ther 27:927–934

    Google Scholar 

  • Lepist EI, Jusko WJ (2004) Modeling and allometric scaling of s(+)-ketoprofen pharmacokinetics and pharmacodynamics: a retrospective analysis. J Vet Pharmacol Therap 27:211–218

    Article  CAS  Google Scholar 

  • Mahmood I, Balian JD (1996) Interspecies scaling: predicting pharmacokinetic parameters of antiepileptic drugs in humans from animals with special emphasis on clearance. J Pharm Sci 85:411–414

    Article  PubMed  CAS  Google Scholar 

  • Mahmood I, Sahajwalla C (2002) Interspecies scaling of biliary excreted drugs. J Pharm Sci 91:1908–1914

    Article  PubMed  CAS  Google Scholar 

  • Mordenti J (1986) Man versus beast: pharmacokinetic scaling in mammals. J Pharm Res 5:1028–1040

    Google Scholar 

  • Mroszczak EJ, Lee FW, Combs D, Sarnquist FH, Huang BL, Wu AT, Tokes LG, Maddox ML, Cho DK (1987) Ketorolac tromethamine absorption, distribution, metabolism, excretion, and pharmacokinetics in animals and humans. Drug Metab Dispos 15:618–626

    PubMed  CAS  Google Scholar 

  • Mullangi R, Ahlawat P, Trivedi RK, Srinivas NR (2009) Use of bile correction factors for allometric prediction of human pharmacokinetic parameters of torcetrapib, a facile cholesteryl ester transfer protein inhibitor. Eur J Drug Metab Pharmacokinet 34:57–63

    Article  PubMed  CAS  Google Scholar 

  • Nagilla R, Ward KW (2004) A comprehensive analysis of the role of correction factors in the allometric predictivity of clearance from rat, dog, and monkey to humans. J Pharm Sci 93:2522–2534

    Article  PubMed  CAS  Google Scholar 

  • Pasloske K, Renaud R, Burger J, Conlon P (1999) Pharmacokinetics of ketorolac after intravenous and oral single dose administration in dogs. J Vet Pharmacol Therap 22:314–319

    Article  CAS  Google Scholar 

  • Pavankumar VV, Vinu CA, Mullangi R, Srinivas NR (2007) Preclinical pharmacokinetics and interspecies scaling of ragaglitazar, a novel biliary excreted PPAR dual activator. Eur J Drug Metab Pharmacokinet 32:29–37

    Article  Google Scholar 

  • Rooks WH 2nd, Tomolonis AJ, Maloney PJ, Wallach MB, Schuler ME (1982) The analgesic and anti-inflammatory profile of (±)-5-benzoyl-1, 2-dihydro-3H-pyrrolo[1, 2a]pyrrole-1-carboxylic acid (RS-37619). Agents Actions 12:684–690

    Article  PubMed  CAS  Google Scholar 

  • Rooks WH 2nd, Maloney PJ, Shott LD, Schuler ME, Sevelius H, Strosberg AM, Tanenbaum L, Tomolonis AJ, Wallach MB, Waterbury D, Lee JP (1985) The analgesic and anti-inflammatory profile of ketorolac and its tromethamine salt. Drugs Exp Clin Res 11:479–492

    PubMed  CAS  Google Scholar 

  • Srinivas NR (2010) Drug development perspectives: considerations, challenges, and strategies. HNB Publishing, NY

    Google Scholar 

  • Srinivas NR, Ahlawat P (2009) Prediction of human pharmacokinetic parameters using animal data and principles of allometry. A case using bicifadine, a non-narcotic analgesic, as an example. Arzneimittelforschung 59:625–630

    PubMed  CAS  Google Scholar 

  • Srinivas NR, Ahlawat P, Shaik JB (2009) Allometric modeling of ciclesonide, a nonhalogenated glucocorticoid, and its active metabolite, desisobutyrylciclesonide, using animal-derived pharmacokinetic parameters. Am J Ther. doi:10.1097/MJT.0b013e31819df738

  • Tang H, Mayersohn M (2005) A mathematical description of the functionality of correction factors used in allometry for predicting human drug clearance. Drug Metab Dispos 33:1294–1296

    Article  PubMed  CAS  Google Scholar 

  • Yi P, Hadden CE, Annes WF, Jackson DA, Peterson BC, Gillespie TA, Johnson JT (2007) The disposition and metabolism of naveglitazar, a peroxisome proliferator activated receptor alpha-gamma dual, gamma-dominant agonist in mice, rats, and monkeys. Drug Metab Dispos 35:51–61

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Mullangi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilibili, R.R., Mullangi, R. & Srinivas, N.R. Intravenous prediction of human pharmacokinetic parameters for ketorolac, a non-steroidal anti-inflammatory agent, using allometry approach. Eur J Drug Metab Pharmacokinet 36, 87–93 (2011). https://doi.org/10.1007/s13318-011-0029-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-011-0029-x

Keywords

Navigation