Skip to main content

Advertisement

Log in

Detrimental effect of the rust Uromyces pencanus on the invasive species Nassella neesiana (Chilean needle grass)

  • Original Paper
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Nassella neesiana (Poaceae) is a perennial grass species indigenous to South America. While usually not troublesome and sometimes appreciated as a forage species within its native range, it is an unwanted species in other parts of the world, where it is considered a serious threat to native biodiversity and an important hindrance to agriculture. The difficulties encountered in controlling the species by chemical and cultural methods have led to investigate the feasibility of applying classical biological control in Australia and New Zealand. The rust Uromyces pencanus has been selected as a promising agent to this end. The effect of the disease caused by this fungus on growth of artificially inoculated N. neesiana plants was investigated. It was found that diseased plants incubated under controlled environmental conditions grew less, produced less green tissue and lost more aerial biomass than healthy control plants. The same tendency was observed under natural environmental conditions. Differences in growth pattern and resistance to disease were encountered between plants from different accessions reared under the same conditions during the experiments. The consequences such differences could have on the efficacy of the rust as a biological control agent are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams EB, Line RF (1984) Epidemiology and host morphology in the parasitism of rush skeletonweed by Puccinia chondrillina. Phytopathology 74:745–748

    Article  Google Scholar 

  • Allen P (1954) Physiological aspects of fungus diseases in plants. Annu Rev Plant Physiol 45:225–248

    Article  Google Scholar 

  • Anderson FE, Pettit W, Briese DT, McLaren DA (2002) Biological control of serrated tussock and Chilean needlegrass. Plant Protection Quarterly 17:104–111

    Google Scholar 

  • Anderson FE, Barton J, McLaren DA (2010) Studies to assess the suitability of Uromyces pencanus as a biological control agent for Nassella neesiana (Poaceae) in Australia and New Zealand. Australas Plant Pathol 39:69–78. https://doi.org/10.1071/AP09057

    Article  Google Scholar 

  • Anderson FE, Díaz L, Barton J, Flemmer AC, Hansen PV, McLaren DA (2011) Exploring the life cycles of three south American rusts that have potential as biocontrol agents of the stipoid grass Nassella neesiana in Australasia. Fungal Biology 115:370–380. https://doi.org/10.1016/j.funbio.2011.01.008

    Article  PubMed  Google Scholar 

  • Anderson FE, Gallego L, Sánchez RM, Flemmer AC, Hansen PV, McLaren D, Barton J (2017) Plant/pathogen interactions observed during host range testing of the rust fungus Uromyces pencanus, a classical biological control agent for Chilean needle grass (Nassella neesiana) in Australia and New Zealand. Biocontrol Sci Tech 27:1096–1117. https://doi.org/10.1080/09583157.2017.1384795

    Article  Google Scholar 

  • Baudoin ABAM, Abad RG, Kok LT, Bruckart WL (1993) Field evaluation of Puccinia carduorum for biological control of musk thistle. Biol Control 3:53–60. https://doi.org/10.1006/bcon.1993.1009

    Article  Google Scholar 

  • Bennett AR, Bruckart WL, Shishkoff N (1991) Effects of dew, plant age, and leaf position on the susceptibility of yellow starthistle to Puccinia jaceae. Plant Dis 75:499–501. https://doi.org/10.1094/pd-75-0499

    Article  Google Scholar 

  • Berner DK, Bruckart WL (2005) A decision tree for evaluation of exotic plant pathogens for classical biological control of introduced invasive weeds. Biol Control 34:222–232. https://doi.org/10.1016/j.biocontrol.2005.04.012

    Article  Google Scholar 

  • Bourdôt GW, Lamoureaux SL, Watt MS, Manning LK, Kriticos DJ (2012) The potential global distribution of the invasive weed Nassella neesiana under current and future climates. Biol Invasions 14:1545–1556. https://doi.org/10.1007/s10530-010-9905-6

    Article  Google Scholar 

  • Burdon JJ (1987) Diseases and plant population biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Burdon JJ, Groves RH, Cullen JM (1981) The impact of biological control on the distribution and abundance of Chondrilla juncea in south-eastern Australia. J Appl Ecol 18:957–966. https://doi.org/10.2307/2402385

    Article  Google Scholar 

  • Charudattan R (2005) Ecological, practical, and political inputs into selection of weed targets: what makes a good biological control target? Biol Control 35:183–196. https://doi.org/10.1016/j.biocontrol.2005.07.009

    Article  Google Scholar 

  • Climate-data.org. https://en.climate-data.org. [Accessed 10/8/2020]

  • Cummins GB (1971) The rust fungi of cereals, grasses and bamboos. II. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Emge RG, Melching JS, Kingsolver CH (1981) Epidemiology of Puccinia chondrillina, a rust pathogen for the biological control of rush skeleton weed in the United States. Phytopathology 71:839–843

    Article  Google Scholar 

  • Ericson L, Burdon JJ, Müller WJ (1999) Spatial and temporal dynamics of epidemics of the rust fungus Uromyces valerianae on populations of its host Valeriana salina. J Ecol 87:649–658

    Article  Google Scholar 

  • Ericson L, Burdon JJ, Muller WJ (2002) The rust pathogen Triphragmium ulmariae as a selective force affecting its host, Filipendula ulmaria. J Ecol 90:167–178. https://doi.org/10.1046/j.0022-0477.2001.00648.x

    Article  Google Scholar 

  • Erneberg M, Strandberg B, Strandberg M, Jensen B, Weiner J (2008) Effects of soil disturbance and disease on the growth and reproduction of Lolium Perenne (Poaceae) introduced to semi-natural grasslands. Pol J Ecol 56:593–604

    Google Scholar 

  • Evans HC (2013) Biological control of weeds with Fungi. In: Kempken F (ed) The Mycota: agricultural applications XI, 2nd edn. Springer-Verlag, Berlin, pp 145–172

    Chapter  Google Scholar 

  • Evans HC, Fleureau L (1993) Studies on the rust, Maravalia cryptostegiae, a potential biological control agent of rubber-vine weed, Cryptostegia grandiflora (Asclepiadaceae: Periplocoideae), in Australia, II: infection. Mycopathologia 124:175–184. https://doi.org/10.1007/BF01146201

    Article  Google Scholar 

  • Flemmer AC, Anderson FE, Hansen PV, McLaren DA (2010) Microscopic observations of a compatible host/pathogen interaction between a potential biocontrol agent (Uromyces pencanus) and its target weed (Nassella neesiana). Mycoscience 51:396–400. https://doi.org/10.1007/S10267-010-0051-X

    Article  Google Scholar 

  • Groves RH, Williams JD (1975) Growth of skeleton weed (Chondrilla juncea L.) as affected by growth of subterranean clover (Trifolium subterraneum L.) and infection by Puccinia chondrillina Bubak & Syd. Aust J Agric Res 26:975–783. https://doi.org/10.1071/ar9750975

    Article  Google Scholar 

  • Hasan S, Aracil E (1991) Biology and effectiveness of Uromyces heliotropii Sred., a potential biological control agent of Heliotropium europaeum L. New Phytol 118:559–563. https://doi.org/10.1111/j.1440-6055.2006.00562.x

    Article  Google Scholar 

  • Hershenhorn J, Casella F, Vurro M (2016) Weed biocontrol with fungi: past, present and future. Biocontrol Sci Tech 26:1313–1328. https://doi.org/10.1080/09583157.2016.1209161

    Article  Google Scholar 

  • Kabaš E, Ljubičić I, Bogdanović S (2019) First record of Nassella neesiana (Trin. & Rupr.) Barkworth (Poaceae) in Croatia. BioInvasions Records 8:478–486. https://doi.org/10.3391/bir.2019.8.3.02

    Article  Google Scholar 

  • Lamberto S, Valle AF, Aramayo EM, Andrada AC (1997) Manual Ilustrado de las plantas silvestres de la región de Bahía Blanca. Diagrama SRL, Bahía Blanca

    Google Scholar 

  • Lindquist JC (1982) Royas de la República Argentina y zonas limítrofes. INTA, Buenos Aires

    Google Scholar 

  • Mattner SW, Parbery DG (2007) Crown rust affects plant performance and interference ability of Italian ryegrass in the post-epidemic generation. Grass Forage Sci 62:437–444. https://doi.org/10.1111/j.1365-2494.2007.00598.x

    Article  Google Scholar 

  • McLaren DA, Anderson FE, Barton J (2012) Nassella trichotoma (Nees) hack. -serrated tussock, Nassella neesiana Trin. & Rup. -Chilean needle grass. In: Julien MH (ed) Biological control of weeds in Australia 1960 to 2010. CSIRO Publishing, Melbourne, pp 404–415

    Google Scholar 

  • Mitchell CE (2003) Trophic control of grassland production and biomass by pathogens. Ecol Lett 6:147–155. https://doi.org/10.1046/j.1461-0248.2003.00408.x

    Article  Google Scholar 

  • Morin L (2020) Progress in biological control of weeds with plant pathogens. Annu Rev Phytopathol 58:201–223

    Article  CAS  Google Scholar 

  • Morin L, Evans KJ, Sheppard AW (2006) Selection of pathogen agents in weed biological control: critical issues and peculiarities in relation to arthropod agents. Aust J Entomol 45:349–365. https://doi.org/10.1111/j.1440-6055.2006.00562.x

    Article  Google Scholar 

  • Morrison JA (1996) Infection of Juncus dichotomus by the smut fungus Cintractia junci: an experimental field test of the effects of neighbouring plants, environment, and host plant genotype. J Ecol 84:691–702. https://doi.org/10.2307/2261332

    Article  Google Scholar 

  • Müller-Schärer H, Rieger S (1998) Epidemic spreads of the rust fungus Puccinia lagenophorae and its impact on the competitive ability of Senecio vulgaris in celeriac during early development. Biocontrol Sci Tech 8:59–72. https://doi.org/10.1080/09583159830432

    Article  Google Scholar 

  • Parker A, Holden ANG, Tomley AJ (1994) Host specificity testing and assessment of the pathogenicity of the rust, Puccinia abrupta var. partheniicola, as a biological control agent of Parthenium weed (Parthenium hysterophorus). Plant Pathol 43:1–16. https://doi.org/10.1111/j.1365-3059.1994.tb00547.x

    Article  Google Scholar 

  • Paul ND (1989) The effects of Puccinia lagenophorae on Senecio vulgaris in competition with Euphorbia peplus. J Ecol 77:552–564. https://doi.org/10.2307/2260769

    Article  Google Scholar 

  • Paul ND, Ayres PG (1986) The effects of infection by rust (Puccinia lagenophorae Cooke) on the growth of groundsel (Senecio vulgaris L.) cultivated under a range of nutrient concentrations. Ann Bot 58:321–331. https://doi.org/10.1093/oxfordjournals.aob.a087210

    Article  Google Scholar 

  • Paul ND, Ayres PG (1987) Water stress modifies intraspecific interference between rust (Puccinia lagenophorae Cooke) - infected and healthy groundsel (Senecio vulgaris L.). New Phytol 106:555–566. https://doi.org/10.1111/j.1469-8137.1987.tb00160.x

    Article  Google Scholar 

  • Politis DJ, Bruckart WL (1986) Infection of musk thistle by Puccinia carduorum influenced by conditions of dew and plant age. Plant Dis 70:288–290

    Article  Google Scholar 

  • Puthod G, Loydi A, Distel RA (2018) Respuesta productiva de Nassella neesiana (Trin. & Rupr.) Barkworth a diferentes intensidades de defoliación. Revista argentina de producción animal 38:63–72

    Google Scholar 

  • Rúgolo de Agrasar ZE, Steibel PE, Troiani HO (2005) Manual ilustrado de las gramíneas de la provincia de La Pampa. Universidad Nacional de La Pampa, Santa Rosa

    Google Scholar 

  • Salama NKG, Edwards GR, Heard MS, Jeger MJ (2010) The suppression of reproduction of Tragopogon pratensis infected by the rust fungus Puccinia hysterium. Fungal Ecol 3:406–408. https://doi.org/10.1016/j.funeco.2010.07.001

    Article  Google Scholar 

  • Schmid B (1994) Effects of genetic diversity in experimental stands of Solidago altissima – evidence for the potential role of pathogens as selective agents in plant populations. J Ecol 82:165–175

    Article  Google Scholar 

  • Shaw M (1963) The physiology and host-parasite relations of the rusts. In: Horsfall JG, Baker KF (eds) Annual review of phytopathology. Annual reviews INC, Palo Alto, pp 259–294

    Google Scholar 

  • Shishkoff N, Bruckart WL (1996) Water stress and damage caused by Puccinia jaceae on two Centaurea species. Biol Control 6:57–63

    Article  Google Scholar 

  • Shtiemberg D (1992) Effects of foliar diseases on gas exchange processes: a comparative study. Phytopathology 82:760–765

    Article  Google Scholar 

  • Thorp JR, Lynch R (2000) The determination of weeds of National Significance. National Weeds Strategy Executive Committee, Launceston

    Google Scholar 

  • Torres MA (1997) Nassella (Gramineae) del noroeste de la Argentina. Stipa (Gramineae) del noroeste de la Argentina. Nicoraella (Gramineae) un nuevo género para América del Sur. Comisión de Investigaciones Científicas Monografía 13, La Plata. Ministerio de la Producción y el Empleo, Provincia de Buenos Aires

    Google Scholar 

  • Verloove F (2005) A synopsis of Jarava Ruiz & Pav. And Nassella E. Desv. (Stipa L. s.l.) (Poaceae: Stipeae) in southwestern Europe. Candollea 60:97–117

    Google Scholar 

  • Vidal R, González A, Gutiérrez L, Umaña R, Speranza P (2011) Distribución de la diversidad genética y sistema reproductivo de Stipa neesiana Trin. & Rupr. Agrociencia Uruguay 15:1–12

    Google Scholar 

  • Wapshere A, Caresche L, Hasan S (1974) The ecology of Chondrilla juncea in the Western Mediterranean. J Appl Ecol 11:783–800

    Article  Google Scholar 

  • Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgments

Warm thanks are due to Nicolás Tamburi and Pablo Martín for providing an ad hoc designed calculation spreadsheet to carry out the non-parametric tests. Pablo Martín is also acknowledged for his advice on the statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. E. Anderson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giordano, L., Anderson, F.E. Detrimental effect of the rust Uromyces pencanus on the invasive species Nassella neesiana (Chilean needle grass). Australasian Plant Pathol. 50, 299–307 (2021). https://doi.org/10.1007/s13313-020-00773-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-020-00773-x

Keywords

Navigation