Skip to main content
Log in

A Review of the Fatigue Strength of Shear Bolted Connections

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

Steel bolted connections are the typical joints used in civil engineering but also in the field of mechanical engineering. In particular, slip-resistant bolted connections are those most used in bridge construction. In these applications, bolted joints are subjected to a cyclic load that arises from traffic flow. It is well known that joints are the critical components of constructions subjected to cyclic loads, due to stress concentration that causes fatigue crack initiation. The purpose of this paper is to provide a summary of considerations, from principal scientific studies of fatigue strength and the behaviour of bolted joints, as well as an up-to-date comprehensive assessment for future development. In particular, a discussion is proposed regarding the parameters that influence the fatigue of bolted joints. The paper concludes with a summary of the major results reported in terms of S–N curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

K t :

Stress concentration factor

σ max :

Maximum stress

σ min :

Minimum stress

N :

Number of cycles

m :

Slope of S–N curve

Δσ :

Stress range

A n :

Net area

A g :

Gross area

R :

Stress ratio

References

  • AASHTO. (2012). American Association of State Highway and Transportation Officials. Washington D.C.: AASHTO.

    Google Scholar 

  • Abazadeh, B. (2016). Failure mode prediction of single lap bolted joints. International Research Journal of Advanced Engineering and Science, 1(4), 95–99.

    Google Scholar 

  • Abazadeh, B., Chakherlou, T. N., & Alderliesten, R. C. (2013). Effect of interference fitting and/or bolt clamping on the fatigue behavior of Al alloy 2024-T3 double shear lap joints in different cyclic load ranges. International Journal of Mechanical Sciences, 72, 2–12.

    Article  Google Scholar 

  • Albrecht, P., Sahli, A. H., & Wattar, F. (1987). Fatigue strength of bolted joints. Journal of Structural Engineering, 113(8), 1834–1849.

    Article  Google Scholar 

  • Atzori, B., Lazzarin, P., & Quaresimin, M. (1997). A re-analysis on fatigue data of aluminium alloy bolted joints. International Journal of Fatigue, 19(7), 579–588.

    Article  Google Scholar 

  • Baker, K. A., & Kulak, G. L. (1985). Fatigue of riveted connections. Canadian Journal of Civil Engineering, 12(1), 184–191.

    Article  Google Scholar 

  • Baron, F., & Larson, E. W. J. (1952). Comparative behaviour of bolted and riveted joints. In Research Re/*-port C 109, The Technological Institute, Northwestern University, Evanston, Illinois.

  • Baron, F., & Larson, E. W. J. (1953). The effect of grip on the fatigue strength of riveted and bolted joints. Proceedings of the American Railway Engineering Association, 54, 175–190.

    Google Scholar 

  • Batho, C., & Bateman, E. H. (1934). Investigations on bolts and bolted joints. London: Second report of the steel structures research committee.

    Google Scholar 

  • Benhaddou, T., Chirol, C., Daidie, A., Guillot, J., Stephan, P., & Tuery, J.-B. (2014). Pre-tensioning effect on fatigue life of bolted shear joints. Aerospace Science and Technology, 36, 36–43.

    Article  Google Scholar 

  • Benhamena, A., Amrouche, A., Talha, A., & Benseddiq, N. (2012). Effect of contact forces on fretting fatigue behavior of bolted plates: Numerical and experimental analysis. Tribology International, 48, 237–245.

    Article  Google Scholar 

  • Benhamena, A., Talha, A., Benseddiq, N., Amrouche, A., Mesmacque, G., & Benguediab, M. (2010). Effect of clamping force on fretting fatigue behavior of bolted assemblies: Case of couple steel-aluminium. Materials Science and Engineering A, 527(23), 6413–6421.

    Article  Google Scholar 

  • Bergengren, Y., & Melander, A. (1992). An experimental and theoretical study of the fatigue properties of hot dip-galvanized high strength sheet steel. Internal Journal of Fatigue, 14, 154–162.

    Article  Google Scholar 

  • Berto, F., Mutignani, F., & Guido, E. (2016a). Effect of hot dip galvanization on the fatigue behaviour of steel bolted connections. International Journal of Fatigue, 93, 168–172.

    Article  Google Scholar 

  • Berto, F., Mutignani, F., & Tisalvi, M. (2015). Notch effect on the fatigue behavior of a hot-dip galvanized structural steel. Strength of Materials, 47(5), 719–727.

    Article  Google Scholar 

  • Berto, F., Mutignani, F., Tisalvi, M., & Laurenti, A. (2016b). Effect of hot-dip galvanization on the fatigue behaviour of notched and welded structural steel. Ingegneria Ferroviaria, 2, 105–118.

    Google Scholar 

  • Birkemoe, P. C., Meinheit, A. M., & Munse, W. H. (1969). Fatigue of AS14 Steel in Bolted Connections. Jod of the Structural Division, ASCE, 95(10), 2011–2031.

    Google Scholar 

  • Birkemoe, P. C., & Srimvasan, R. (1971). Fatigue of Bolted High Strength Structural Steel. Journal of the Structural Division, ASCE, 97(3), 935–950.

    Google Scholar 

  • Bouwman, L. P., & Piraprez, E. (1989). The tightening of high strength bolts in Europe. Steel Construction Today, 3, 18–25.

    Google Scholar 

  • Brown, B. F. (1977). Stress corrosion cracking control measures. National Bureau of Standards (NBS) Monograph 156 QC100. U556 no. 156 [TA462]. (CODEN: NBSMA6).

  • Browne, R. S., Gregory, N. E., & Harper, S. (1975). The effects of galvanizing on the fatigue strengths of steels and welded joints. In Proceeding seminar on galvanizing of silicon containing steels (pp. 246–264). Liege: ILZRO Publishers.

  • BS 7608:2013. (2013). Code of practice for fatigue design and assessment of steel structures, British Standards.

  • Bursi, O. S., D’Incau, M., Zanon, G., Raso, S., & Scardi, P. (2017). Laser and mechanical cutting effects on the cut-edge properties of steel S355N. Journal of Constructional Steel Research, 133, 181–191.

    Article  Google Scholar 

  • CEN, EN1090-2. (2011). Execution of steel structures and aluminium structures Part 2: Technical requirements for steel structures.

  • Chakherlou, T. N., Mirzajanzadeh, M., & Vogwell, J. (2009). Experimental and numerical investigation into the effect of an interference fit on the fatigue life of double shear lap joints. Engineering Failure Analysis, 16, 2066–2080.

    Article  Google Scholar 

  • Chakherlou, T. N., Oskouei, R. H., & Vogwell, J. (2008). Experimental and numerical investigation of the effect of clamping force on the fatigue behaviour of bolted plates. Engineering Failure Analysis, 15, 563–574.

    Article  Google Scholar 

  • Chakherlou, T. N., Razavi, M. J., Aghdam, A. B., & Abazadeh, B. (2011). An experimental investigation on the bolt clamping force and friction effect on the fatigue behavior of aluminum alloy 2024-T3 double shear lap joint. Materials and Design, 32, 4641–4649.

    Article  Google Scholar 

  • Cho, Y., & Kim, T. (2016). Estimation of ultimate strength in single shear bolted connections with aluminum alloys (6061-T6). Thin-Walled Structures, 101, 43–57.

    Article  Google Scholar 

  • Cicero, S., Garcia, T., Alvarez, J. A., Martin-Meizoso, A., Aldazabal, J., Bannister, A., et al. (2016). Definition and validation of Eurocode 3 FAT classes for structural steels containing oxy-fuel, plasma and laser cut holes. International Journal of Fatigue, 87, 50–58.

    Article  Google Scholar 

  • Cullimore, M. S. G. (1982). Fatigue of HSFG bolted joints: Effects of design parameters. In Proceedings of the IABSE colloquium “fatigue of steel and concrete structures” held in Lausanne, International Association for Bridge and Structural Engineering, Zunch (Vol. 37, pp.715–723).

  • De Jesus, A. M. P., & Correia, J. A. F. O. (2008). Fatigue assessment of riveted railway bridge connections. Part II: Numerical investigations. In Steel bridges. Advances solutions and technologies. European Convention for Constructional Steelwork (pp. 339–348).

  • De Jesus, A. M. P., Da Silva, A. L. L., & Correia, J. A. F. O. (2014a). Fatigue of riveted and bolted joints made of puddle iron: A numerical approach. Journal of Constructional Steel Research, 102, 164–177.

    Article  Google Scholar 

  • De Jesus, A. M. P., Da Silva, A. L. L., & Correia, J. A. F. O. (2014b). Fatigue of riveted and bolted joints made of puddle iron: An experimental approach. Journal of Constructional Steel Research, 102, 164–177.

    Article  Google Scholar 

  • DiBattista, J. D., Adamson, D. E. J., & Kulak, G. L. (1998). Evaluation of remaining fatigue life for riveted truss bridges. Canadian Journal of Civil Engineering, 25(4), 678–691.

    Article  Google Scholar 

  • DIN FB 103. (2003). Stahlbrücken. Deutsches Institut für Normung e.V. (DIN). 2003.

  • DS 804:2000. Vorschrift fur Eisenbahnbrucken und sonstige Ingenieurbauteile [Regulation for railway bridges and other engineered constructions]. Deutsche Bahn, Munchen.

  • Elbe, R. W. (1970). Fatigue crack closure under cyclic tension. Engineering Fracture Mechanics, 2, 37–45.

    Article  Google Scholar 

  • EN 1993-1-9:2005. (2005). Design of steel structures, Part 1 - 9: Fatigue.

  • Esmaeili, F., Barzegar, S., & Jafarzadeh, H. (2017). Evaluation of fatigue life reduction factors at bolt hole in double lap bolted joints using volumetric method. Journal of Solid Mechanics, 9(1), 1–11.

    Google Scholar 

  • Esmaeili, F., & Chakherlou, T. N. (2015). Investigating on the effect of tightening torque on the stress distribution in double lap simple bolted and hybrid (bolted-bonded) joints. Journal of Solid Mechanics, 7, 268–280.

    Google Scholar 

  • Esmaeili, F., Chakherlou, T. N., & Zehsaz, M. (2014). Investigation of bolt clamping force on the fatigue life of double lap simple bolted and hybrid (bolted/bonded) joints via experimental and numerical analysis. Engineering Failure Analysis, 45, 406–420.

    Article  Google Scholar 

  • Esmaeili, F., Chakherlou, T. N., Zehsaz, M., & Hasanifard, S. (2013). Investigating the effect of clamping force on the fatigue life of bolted plates using volumetric approach. Journal of Mechanical Science and Technology, 27(12), 3657–3664.

    Article  Google Scholar 

  • Ferjaoui, A., Yue, T., Wahab, M. A., & Talemi, R. H. (2015). Prediction of fretting fatigue crack initiation in double lap bolted joint. International Journal of Fatigue, 73, 66–76.

    Article  Google Scholar 

  • Fernando, U. S., Farrahi, G. H., & Brown, M. W. (1994). Fretting fatigue crack growth behavior of BS L45 4 percent copper aluminium alloy under constant normal load. Fretting fatigue. ESIS 18 (pp. 183–195). London: Mechanical Engineering Publications.

  • Fisher, J. W. (1984). Fatigue and Fracture in Steel Bridges. New York: Wiley.

    Google Scholar 

  • Frank, K. H., & Yura, J. A. (1981). An experimental study of bolted shear connections. In Report FHWA/RD-81/148, Department of Civil Engineering University of Texas, Austin.

  • Garcia, T., Cicero, S., Ibáñez, F. T., Álvarez, J. A., Martín-Meizoso, A., Bannister, A., et al. (2015). Fatigue performance of thermally cut bolt holes in structural steel S460 M. Procedia Engineering, 133, 590–602.

    Article  Google Scholar 

  • Geissler, K. (2002). Assessment of old steel bridges, Germany. Structural Engineering International, 12(4), 258–263.

    Article  Google Scholar 

  • Guo, R., Rui-Chun, D., Mesmacque, G., Zhang, L., Amrouche, A., & Guo, R. (2008). Fretting fatigue behavior of riveted Al 6XXX components. Materials Science and Engineering A, 483–484(1), 398-401.

  • Hamalainen, O. P., & Bjork, T. (2015). Fretting fatigue phenomenon in bolted high-strength steel plate connections. Steel Construction, 8, 174–178.

    Article  Google Scholar 

  • Hansen, N. G. (1959). Fatigue tests of joints of high strength steels. Journal of the Structural Division, ASCE, 85(3).

    Google Scholar 

  • Imam, B. M., & Righiniotis, T. D. (2010). Fatigue evaluation of riveted railway bridges through global and local analysis. Journal of Constructinal Steel Research, 66, 1411–1421.

    Article  Google Scholar 

  • Imam, B. M., Righiniotis, T. D., & Chryssanthopoulos, M. K. (2007). Numerical modelling of riveted railway bridge connections for fatigue evaluation. Engineering Structures, 29, 3071–3081.

    Article  Google Scholar 

  • Jaspart, J-P., Demonceau, J-F., Renkin, S., & Guillaume, M. L. (2009). European design recommendations for simple joints in steel structures. Publication n. 126, 1° edition (pp. 90). Bruxelles, Belgium: European Convention for Constructional Steelwork. http://hdl.handle.net/2268/19647.

  • Jezernik, N., Glodez, S., Vuherer, T., Spes, B., & Kramberger, J. (2007). The influence of mechanical and laser cutting process on the fatigue strength of high strength steel S960Q. Key Engineering, Master, 669–672.

    Article  Google Scholar 

  • Jimenez-Pena, C., Talemi, R. H., Rossi, B., & Debruyne, D. (2016). Investigations on the fretting fatigue failure mechanism of bolted joints in high strength steel subjected to different levels of pre-tension. Tribology International, 108, 128–140.

    Article  Google Scholar 

  • Josi, G. (1999). Fatigue of bearing-type shear splices. Master degree Thesis in Structural Engineering, University of Alberta, Edmonton, Alberta.

  • JSSC. (1995). Fatigue design recommendations for steel structures. Tokyo: Gihodo Shuppan.

    Google Scholar 

  • Juoksukangas, J., Lehtovaara, A., & Mantyla, A. (2016). Experimental and numerical investigation of fretting fatigue behaviour in bolted joints. Tribology International, 103, 440–448.

    Article  Google Scholar 

  • Kim, S. H., Lee, S. W., & Mha, H. S. (2001). Fatigue reliability assessment of an existing steel railroad bridge. Engineering Structures, 23, 1203–1211.

    Article  Google Scholar 

  • Kloppel, K., & Seegcr, T. (1965). Sicherheit und Beinessung Von H. V. Verbindungen Aus ST37 und ST52 Nach Versuchen unter Dauerbelastung und Ruhender Belastung”. Technische Hochschule, Darmstadt.

  • Lazzarin, P., Milani, V., & Quaresimin, M. (1997). Scatter bands summarizing the fatigue strength of aluminium alloy bolted joints. International Journal of Fatigue, 1(5), 401–407.

    Article  Google Scholar 

  • Lazzarin, P., & Mutignani, F. (1991). Fatigue behaviour of high strength bolted connections. In ECCS Nordic Steel Colloquium, Odense.

  • Lazzarin, P., Mutignani, F., & Carnio, F. (1995). Fatigue strength of partially joined members. In Nordic Steel Construction Conference, Malmöe.

  • Lazzarin, P., Mutignani, F., & Quaresimin, M. (1996). On the fatigue behaviour of C, H and L-shaped profiles. Costruzioni Metalliche, 3, 31–39.

    Google Scholar 

  • Lieurade, H. P. (1976a). Eiude de lu tenue à la fatigue des assemblages boulonnés en aciers à haute limite d’élasticité. In Report RE 339, Institut de Recherches de la Sidérurgie Francaise, Saint Germain en Laye.

  • Lieurade, H. P. (1976b). Fatigue Study of Bolted Joints Made of High Yield Strength Steels. In Report, IRSID RE 339, Institut de Recherche Siderurgique, Saint-German-en-Laye.

  • Livieri, P., Lazzarin, P., Mutignani, F., & Tisalvi, M. (2001). Fatigue tests on riveted connections. In 9th Nordic Steel Construction Conference (pp. 599–606).

  • Mang, F. (1989). Investigation into the fatigue strength of specimens of steel with flame-cut holes. Schweis Schneid, 41, 81–85.

    Google Scholar 

  • Mas, E., & Janss, J. (1964). Assemblages pur boulons à haute résistance-Fatigue des assemblages à double couvre-joint. In Report MT 10, Centre de Recherches Scientifiques et Techniques de IYIndustrie des Fabrications Mètalliques, Section Construction Métallique, Brussels.

  • Munse, W. H., Wright, D. T., & Newmark, N. M. (1954). Laboratory tests of bolted joints. Proceedings of the American Society of Civil Engineering, Structural Division, 80(441), 38.

    Google Scholar 

  • Nakazawa, K., Sumita, M., & Mayurama, N. (1992). Effect of contact pressure on fretting fatigue of high strength steel and titanium alloy. In Standardization of fretting fatigue tests and equipment. ASTM STP (Vol. 1159, pp. 115–125).

  • Nilsson, T., Engberg, G., & Trogen, H. (1989). Fatigue properties of hot-dip galvanized steels. Scandinavian Journal of Metallurgy, 18, 166–175.

    Google Scholar 

  • Novoselac, S., Kozak, D., Ergic, T., & Damjanovic, D. (2014a). Fatigue damage assessment of bolted joint under different preload forces and variable amplitude eccentric forces for high reliability. Structural Integrity and Life, 1(2), 93–109.

    Google Scholar 

  • Novoselac, S., Kozak, D., Ergic, T., & Simic, I. (2014b). Influence of stress gradients on bolted joint fatigue behaviour under different preloads and cyclic loads ratio. Structural Integrity end Life, 1(1), 3–16.

    Google Scholar 

  • Oskouei, R. H., & Chakherlou, T. N. (2009). Reduction in clamping force due to applied longitudinal load to aerospace structural bolted plates. Aerospace Science and Technology, 13, 325–330.

    Article  Google Scholar 

  • Oskouei, R. H., Keikhosravy, M., & Soutis, C. (2010). A finite elementstress analysis of aircraft bolted joints loaded in tension. The Aeronautical Journal, 114, 315–320.

    Article  Google Scholar 

  • Paasch, R. K., & De Piero, A. H. (1999). Fatigue crack modeling in bridge deck connection details, final report SPR 380. Oregon Department of Transportation.

  • Panchenko, Y. M., Marshakov, A. I., Igonin, T. N., Kovtanyuk, V. V., & Nikolaeva, L. A. (2014). Long-term forecast of corrosion mass losses of technically important metals in various world regions using a power function. Corrosion Science, 88, 306–316.

    Article  Google Scholar 

  • Pena, C. J., Talemi, R. H., Rossi, B., & Debruyne, D. (2017). Investigations on the fretting fatigue failure mechanism of bolted joints in high strength steel subjected to different levels of pre-tension. Tribology International, 108, 128–140.

    Article  Google Scholar 

  • Righiniotis, T. D., Imam, B. M., & Chryssanthopoulos, M. K. (2008). Fatigue analysis of riveted railway bridge connections using the theory of critical distances. Engineering Structures, 30, 2707–2715.

    Article  Google Scholar 

  • Sahli, A., Albrecht, P., & Vannoy, D. W. (1984). Fatigue strength of retrofitted cover plates. Journal of Structural Engineering, ASCE, 110(6), 1374–1388.

    Article  Google Scholar 

  • Sànchez, L., Gutiérrez-Solana, F., & Pesquera, D. (2004). Fatigue behaviour of punched structural plates. Engineering Failure Analysis, 11, 751–764.

    Article  Google Scholar 

  • Schneider, R., Wuttke, U., & Berger, C. (2010). Fatigue analysis of threaded connections using the local strain approach. Procedia Engineering, 2(1), 2357–2366.

    Article  Google Scholar 

  • Steinhardt, O., & Moehler, K. (1959). “Versuche air Anwendung vorgespannter Schrauben im Stahlbau, Teil II”. Bericht des Deutschen Ausschusses fiStahlbau, Stahlbau Verlag GmbH, Cologne.

  • Steinhardt, O., & Moehler, K. (1962). “Tests on Application of High Strength Bolts in Steel Construction”. Report n.24, Part III, Berichte des Deutschen Ausschusses fuer Stahlbau, Stahlbau Verlag, Cologne.

  • Szolwinski, M. T., & Farris, T. N. (1996). Mechanics of fretting fatigue crack formation. Wear, 198, 93–107.

    Article  Google Scholar 

  • Taghizadeh, H., Chakherlou, T. N., Ghorbani, H., & Mohammadpour, A. (2015). Prediction of fatigue life in cold expanded fastener holes subjected to bolt tightening in Al alloy 7075-T6 plate. International Journal of Mechanical Sciences, 90, 6–15.

    Article  Google Scholar 

  • Taylor, D. (2007). The theory of the critical distances: A new perspective in fracture mechanics. London: Elsevier.

    Google Scholar 

  • Thomas, D. (2011). The influence of the laser and plasma traverse cutting speed process parameter on the cut-edge characteristics and durability of Yellow Goods vehicle applications. Journal of Manufacturing Processes, 13, 120–132.

    Article  Google Scholar 

  • Thomas, D. J., Whittaker, M. T., Bright, G. W., & Gao, Y. (2011). The influence of mechanical and CO2 Laser cut-edge characterization on the fatigue life performance of high strength automotive steels. Journal of Materials Processing Technology, 211, 263–274.

    Article  Google Scholar 

  • Valtinat, G., Hadrych, I., & Huhn, H. (2016). Strengthening of riveted and bolted steel constructions under fatigue loading by preloaded fasteners-experimental and theoretical investigations. In Proceedings of the international conference on connections in steel structures I V (pp 464–473). AISC and ECCS, Roanoke, USA, Oct. 22–25.

  • Valtinat, G., & Huhn, H. (2004). Bolted connection with hot dip galvanized steel members with punched holes. Amsterdam: Connections in Steel Structures V.

    Google Scholar 

  • Vogt, J. B., Boussac, O., & Foct, J. (2000). Prediction of fatigue resistance of a hot-dip galvanized steel. Fatigue & Fracture of Engineering Materials & Structures, 23, 33–39.

    Article  Google Scholar 

  • Wang, C. S., Chen, A. R., Chen, W. Z., & Xu, Y. (2006). Application of probabilistic fracture mechanics in evaluation of existing riveted bridges. Bridge Structures, 2(4), 223–232.

    Article  Google Scholar 

  • Wang, Z. Y., Li, L., Young, J. L., & Wang, Q. Y. (2016). Fatigue property of open-holesteel plates influenced by bolted clamp-up and hole fabrication methods. Materials, 9(8), 698.

    Article  Google Scholar 

  • Wilson, W. M. & Thomas, F. P. (1938). Fatigue tests of riveted joints. Bulletin 302, Engineering Experiment Station, Univeristy of Illinois.

  • Yin, W. S., Fang, Q. H., Wang, S. X., & Wang, X. H. (1982). Fatigue strength of high strength bolted joints”. In Proceedings of the IABSE colloquium “fatigue of steel and concrete structures” held in Lusanne, International Association for Bridge and Structural Engineering, Zurich (Vol. 37, pp. 707–714).

  • Zampieri, P., Curtarello, A., Maiorana, E., & Pellegrino, C. (2017a). Numerical analyses of corroded bolted connections. Procedia Structural, 5, 592–599.

    Article  Google Scholar 

  • Zampieri, P., Curtarello, A., Maiorana, E., Pellegrino, C., De Rossi, N., Savio, G., et al. (2017b). Influence of corrosion morphology on the Fatigue strength of Bolted joints. Procedia Structural Integrity, 5, 409–415.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Maiorana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zampieri, P., Curtarello, A., Maiorana, E. et al. A Review of the Fatigue Strength of Shear Bolted Connections. Int J Steel Struct 19, 1084–1098 (2019). https://doi.org/10.1007/s13296-018-0189-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-018-0189-5

Keywords

Navigation