Skip to main content
Log in

Pigeons as a model species for cognitive neuroscience

  • Review article
  • Published:
e-Neuroforum

Abstract

Deeper understanding of the neuronal basis of behavior and its evolution requires investigation of model organisms taken from different taxonomic groups. The merits of this comparative approach are highlighted by research on birds: while their cognitive capacities have long been underestimated, research on avian model systems more recently has begun to provide central insights into the functional organization of the brain. In particular, domesticated homing pigeons (Columba livia) have been used as a model for the study of the psychological processes underlying learning, memory, and choice behavior, and much of current animal learning theory is based on findings with pigeons. Moreover, the vast amount of available behavioral and anatomical data has rendered the pigeon one of the key model species of behavioral and comparative neuroscience. This article illustrates some insights gained from research with pigeons with applicability beyond the class of aves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Diekamp B, Kalt T, Güntürkün O (2002) Working memory neurons in pigeons. J Neurosci 22:RC210

    PubMed  Google Scholar 

  2. Herrnstein RJ, Loveland DH (1964) Complex visual concept in the pigeon. Science 146:549–551

    Article  CAS  PubMed  Google Scholar 

  3. Jarvis ED, Güntürkün O, Bruce L et al (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6:151–159

    Article  CAS  PubMed  Google Scholar 

  4. Manns M, Römling J (2012) The impact of asymmetrical light input on cerebral hemispheric specialization and interhemispheric cooperation. Nat Commun 3:696

    Article  PubMed  Google Scholar 

  5. Starosta S, Stüttgen MC, Güntürkün O (2014) Recording single neurons’ action potentials in freely moving pigeons across three stages of learning. J Vis Exp 8:e51283

    Google Scholar 

  6. Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28:575–589

    PubMed  Google Scholar 

  7. Blechman AD (2007) Pigeons: the fascinating saga of the world’s most revered and reviled bird. Grove Press, New York

  8. Concha ML, Bianco IH, Wilson SW (2012) Encoding asymmetry within neural circuits. Nat Rev Neurosci 13:832–843

    Article  CAS  PubMed  Google Scholar 

  9. Frasnelli E, Vallortigara G, Rogers LJ (2012) Left-right asymmetries of behaviour and nervous system in invertebrates. Neurosci Biobehav Rev 36:1273–1291

    Article  PubMed  Google Scholar 

  10. Green L, Myerson J (2004) A discounting framework for choice with delayed and probabilistic rewards. Psychol Bull 130:769–792

    Article  PubMed Central  PubMed  Google Scholar 

  11. Güntürkün O (2000) Sensory physiology: vision. In: Whittow GC (ed) Sturkie’s avian physiology. Academic Press, Oxford

  12. Kalenscher T, Windmann S, Rose J et al (2005) Single units in the pigeon brain integrate reward amount and time-to-reward in an impulsive choice task. Curr Biol 15:594–602

    Article  CAS  PubMed  Google Scholar 

  13. Manns M, Güntürkün O (2009) Dual coding of visual asymmetries in the pigeon brain: the interaction of bottom-up and top-down systems. Exp Brain Res 199:323–332

    Article  PubMed  Google Scholar 

  14. Reiner A, Perkel DJ, Bruce LL et al (2004) Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 473:377–414

    Article  PubMed Central  PubMed  Google Scholar 

  15. Striedter GF, Belgard TG, Chen C-C et al (2014) NSF workshop report: discovering general principles of nervous system organization by comparing brain maps across species. J Comp Neurol 522:1445

    Article  PubMed  Google Scholar 

  16. Ströckens F, Güntürkün O, Ocklenburg S (2013) Limb preferences in non-human vertebrates. Laterality 18:536–575

    PubMed  Google Scholar 

  17. Valencia-Alfonso CE, Verhaal J, Güntürkün O (2009) Ascending and descending mechanisms of visual lateralization in pigeons. Philos Trans R Soc Lond B Biol Sci 364:955–963

    Article  PubMed Central  PubMed  Google Scholar 

  18. Vaughan W, Greene SL (1984) Pigeon visual memory capacity. J Exp Psychol 10:256–271

    Google Scholar 

  19. Verhaal J, Kirsch JA, Vlachos I et al (2012) Lateralized reward-related visual discrimination in the avian entopallium. Eur J Neurosci 35:1337–1343

    Article  PubMed  Google Scholar 

  20. Watanabe S, Sakamoto J, Wakita M (1995) Pigeons’ discrimination of paintings by Monet and Picasso. J Exp Anal Behav 63:165–174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Yamazaki Y, Aust U, Huber L et al. (2007) Lateralized cognition: asymmetrical and complementary strategies of pigeons during discrimination of the “human concept”. Cognition 104:315–344

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. O. Güntürkün, M.C. Stüttgen, and M. Manns state that there are no conflicts of interest. The accompanying manuscript does not include studies on humans or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Güntürkün.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güntürkün, O., Stüttgen, M. & Manns, M. Pigeons as a model species for cognitive neuroscience. e-Neuroforum 5, 86–92 (2014). https://doi.org/10.1007/s13295-014-0057-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13295-014-0057-5

Keywords

Navigation