Skip to main content

Advertisement

Log in

Genetic Engineering of Cyanobacteria to Enhance Biohydrogen Production from Sunlight and Water

  • Published:
AMBIO Aims and scope Submit manuscript

Abstract

To mitigate global warming caused by burning fossil fuels, a renewable energy source available in large quantity is urgently required. We are proposing large-scale photobiological H2 production by mariculture-raised cyanobacteria where the microbes capture part of the huge amount of solar energy received on earth’s surface and use water as the source of electrons to reduce protons. The H2 production system is based on photosynthetic and nitrogenase activities of cyanobacteria, using uptake hydrogenase mutants that can accumulate H2 for extended periods even in the presence of evolved O2. This review summarizes our efforts to improve the rate of photobiological H2 production through genetic engineering. The challenges yet to be overcome to further increase the conversion efficiency of solar energy to H2 also are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Berman-Frank, I., P. Lundgren, and P. Falkowski. 2003. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Research in Microbiology 154: 157–164.

    Article  CAS  Google Scholar 

  • Bothe, H., O. Schmitz, M.G. Yates, and N.E. Newton. 2010. Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiology and Molecular Biology Reviews 74: 529–551.

    Article  CAS  Google Scholar 

  • Carrasco, C.D., S.D. Holliday, A. Hansel, P. Lindblad, and J.W. Golden. 2005. Heterocyst-specific excision of the Anabaena sp. strain PCC 7120 hupL element requires xisC. Journal of Bacteriology 187: 6031–6038.

    Article  CAS  Google Scholar 

  • Einsle, O., F.A. Tezcan, S.L. Andrade, B. Schmid, M. Yoshida, J.B. Howard, and D.C. Rees. 2002. Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor. Science 297: 1696–1700.

    Article  CAS  Google Scholar 

  • Elhai, J., and C.P. Wolk. 1988. Conjugal transfer of DNA to cyanobacteria. Methods in Enzymology 167: 747–754.

    Article  CAS  Google Scholar 

  • Ghirardi, M.L., and P. Mohanty. 2010. Oxygenic hydrogen photoproduction—current status of the technology. Current Science 98: 499–507.

    CAS  Google Scholar 

  • Ghirardi, M.L., M.C. Posewitz, P.C. Maness, A. Dubini, J. Yu, and M. Seibert. 2007. Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annual Review of Plant Physiology 58: 71–91.

    Article  CAS  Google Scholar 

  • Ghirardi, M.L., A. Dubini, J. Yu, and P.C. Maness. 2009. Photobiological hydrogen-producing systems. Chemical Society Reviews 38: 52–61.

    Article  CAS  Google Scholar 

  • Happe, T., K. Schütz, and H. Böhme. 2000. Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Journal of Bacteriology 182: 1624–1631.

    Article  CAS  Google Scholar 

  • Kaneko, T., Y. Nakamura, C.P. Wolk, T. Kuritz, S. Sasamoto, A. Watanabe, M. Iriguchi, A. Ishikawa, et al. 2001. Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Research 8: 205–213.

    Article  CAS  Google Scholar 

  • Kosourov, S.N., M.L. Ghirardi, and M. Seibert. 2011. A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain. International Journal of Hydrogen Energy 36: 2044–2048.

    Article  CAS  Google Scholar 

  • Kumazawa, S., and A. Mitsui. 1994. Efficient hydrogen photoproduction by synchronously grown cells of a marine cyanobacterium, Synechococcus sp. Miami BG-043511, under high cell-density conditions. Biotechnology and Bioengineering 44: 854–858.

    Article  CAS  Google Scholar 

  • Lindberg, P., K. Schütz, T. Happe, and P. Lindblad. 2002. A hydrogen producing, hydrogenase-free mutant strain of Nostoc punctiforme ATCC 29133. International Journal of Hydrogen Energy 27: 1291–1296.

    Article  CAS  Google Scholar 

  • Masukawa, H., M. Mochimaru, and H. Sakurai. 2002a. Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen fixing cyanobacterium Anabaena sp. PCC 7120. Applied Microbiology and Biotechnology 58: 618–624.

    Article  CAS  Google Scholar 

  • Masukawa, H., M. Mochimaru, and H. Sakurai. 2002b. Hydrogenases and photobiological hydrogen production utilizing nitrogenase system in cyanobacteria. International Journal of Hydrogen Energy 27: 1471–1474.

    Article  CAS  Google Scholar 

  • Masukawa, H., K. Inoue, and H. Sakurai. 2007. Effects of disruption of homocitrate synthase genes on Nostoc sp. strain PCC 7120 photobiological hydrogen production and nitrogenase. Applied and Environmental Microbiology 73: 7562–7570.

    Article  CAS  Google Scholar 

  • Masukawa, H., X. Zhang, E. Yamazaki, S. Iwata, K. Nakamura, M. Mochimaru, K. Inoue, and H. Sakurai. 2009. Survey of the distribution of different types of nitrogenases and hydrogenases in heterocyst-forming cyanobacteria. Marine Biotechnology 11: 397–409.

    Article  CAS  Google Scholar 

  • Masukawa, H., K. Inoue, H. Sakurai, C.P. Wolk, and R.P. Hausinger. 2010. Site-directed mutagenesis of the Anabaena sp. strain PCC 7120 nitrogenase active site to increase photobiological hydrogen production. Applied and Environmental Microbiology 76: 6741–6750.

    Article  CAS  Google Scholar 

  • Mayer, S.M., C.A. Gormal, B.E. Smith, and D.M. Lawson. 2002. Crystallographic analysis of the MoFe protein of nitrogenase from a nifV mutant of Klebsiella pneumoniae identifies citrate as a ligand to the molybdenum of iron molybdenum cofactor (FeMoco). Journal of Biological Chemistry 277: 35263–35266.

    Article  CAS  Google Scholar 

  • Melis, A. 2009. Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Science 177: 272–280.

    Article  CAS  Google Scholar 

  • Sakurai, H., and H. Masukawa. 2007. Promoting R & D in photobiological hydrogen production utilizing mariculture-raised cyanobacteria. Marine Biotechnology 9: 128–145.

    Article  CAS  Google Scholar 

  • Seefeldt, L.C., B.M. Hoffman, and D.R. Dean. 2009. Mechanism of Mo-dependent nitrogenase. Annual Review of Biochemistry 78: 701–722.

    Article  CAS  Google Scholar 

  • Schütz, K., T. Happe, O. Troshina, P. Lindblad, E. Leitao, P. Oliveira, and P. Tamagnini. 2004. Cyanobacterial H2 production—a comparative analysis. Planta 218: 350–359.

    Article  Google Scholar 

  • Tamagnini, P., R. Axelsson, P. Lindberg, F. Oxelfelt, R. Wunschiers, and P. Lindblad. 2002. Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiology and Molecular Biology Reviews 66: 1–20.

    Article  CAS  Google Scholar 

  • Tamagnini, P., E. Leitao, P. Oliveira, D. Ferreira, F. Pinto, D.J. Harris, T. Heidorn, and P. Lindblad. 2007. Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiology Reviews 31: 692–720.

    Article  CAS  Google Scholar 

  • Tsygankov, A.A., A.S. Fedorov, S.N. Kosourov, and K.K. Rao. 2002. Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnology and Bioengineering 80: 777–783.

    Article  CAS  Google Scholar 

  • Wolk, C.P., A. Ernst, and J. Elhai. 1994. Heterocyst metabolism and development. In The molecular biology of cyanobacteria, ed. D.A. Bryant, 769–823. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Yoshino, F., H. Ikeda, H. Masukawa, and H. Sakurai. 2007. High photobiological hydrogen production activity of a Nostoc sp. PCC 7422 uptake hydrogenase-deficient mutant with high nitrogenase activity. Marine Biotechnology 9: 101–112.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) and by the JST PRESTO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Masukawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masukawa, H., Kitashima, M., Inoue, K. et al. Genetic Engineering of Cyanobacteria to Enhance Biohydrogen Production from Sunlight and Water. AMBIO 41 (Suppl 2), 169–173 (2012). https://doi.org/10.1007/s13280-012-0275-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-012-0275-4

Keywords

Navigation