Skip to main content
Log in

Decreased expression of LncRNA SLC25A25-AS1 promotes proliferation, chemoresistance, and EMT in colorectal cancer cells

  • Original Article
  • Published:
Tumor Biology

Abstract

Increasing evidence suggests that long non-coding RNAs (lncRNAs) are aberrantly expressed in colorectal cancer (CRC); however, only few CRC-related lncRNAs have been characterized. In this study, we aimed to dig out potential dysregulated lncRNAs that are highly involved in CRC development. Using a lncRNA-mining approach, we performed lncRNA expression profiling in a large CRC cohort from Gene Expression Ominus (GEO), GSE39582 test series (N = 585). We identified 31 downregulated lncRNAs and 16 upregulated lncRNAs from the GSE39582 test series patients (566 tumor patients and 19 normal controls). The reliability of lncRNA expression profiles was further confirmed by RT-qPCR in carcinoma tissues and paired adjacent normal tissues from 30 CRC patients, also in the serum from 109 CRC patients, and 99 normal individuals. We demonstrated that the expression of SLC25A25-AS1, which has not been reported previously, was significantly decreased in both the tumor tissues (27 out of 30) and serum of CRC patients. SLC25A25-AS1 overexpression significantly inhibited proliferation and colony formation in colorectal cancer cell lines, and downregulation of SLC25A25-AS1 obviously enhanced chemoresistance and promoted EMT process in vitro associated with Erk and p38 signaling pathway activation. Therefore, SLC25A25-AS1 was determined to play a tumor suppressive role in CRC. Our results might provide a lncRNA-based target for CRC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer J Int Cancer. 2015;136(5):E359–86.

    Article  CAS  Google Scholar 

  2. Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet. 2014;383(9927):1490–502.

    Article  PubMed  Google Scholar 

  3. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87(2):159–70.

    Article  CAS  PubMed  Google Scholar 

  4. Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol. 2011;6:479–507.

    Article  CAS  PubMed  Google Scholar 

  5. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41.

    Article  CAS  PubMed  Google Scholar 

  6. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21(6):354–61.

    Article  CAS  PubMed  Google Scholar 

  8. Yuan SX, Yang F, Yang Y, et al. Long noncoding RNA associated with microvascular invasion in hepatocellular carcinoma promotes angiogenesis and serves as a predictor for hepatocellular carcinoma patients’ poor recurrence-free survival after hepatectomy. Hepatology. 2012;56(6):2231–41.

    Article  CAS  PubMed  Google Scholar 

  9. Redis RS, Sieuwerts AM, Look MP, et al. CCAT2, a novel long non-coding RNA in breast cancer: expression study and clinical correlations. Oncotarget. 2013;4(10):1748–62.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gutschner T, Hammerle M, Eissmann M, et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013;73(3):1180–9.

    Article  CAS  PubMed  Google Scholar 

  11. Liu Q, Huang J, Zhou N, et al. LncRNA loc285194 is a p53-regulated tumor suppressor. Nucleic Acids Res. 2013;41(9):4976–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Disc. 2011;1(5):391–407.

    Article  CAS  Google Scholar 

  13. Zhang J, Zhang A, Wang Y, et al. New insights into the roles of ncRNA in the STAT3 pathway. Future Oncol. 2012;8(6):723–30.

    Article  CAS  PubMed  Google Scholar 

  14. Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kogo R, Shimamura T, Mimori K, et al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 2011;71(20):6320–6.

    Article  CAS  PubMed  Google Scholar 

  16. Panzitt K, Tschernatsch MM, Guelly C, et al. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology. 2007;132(1):330–42.

    Article  CAS  PubMed  Google Scholar 

  17. Matouk IJ, Abbasi I, Hochberg A, Galun E, Dweik H, Akkawi M. Highly upregulated in liver cancer noncoding RNA is overexpressed in hepatic colorectal metastasis. Eur J Gastroenterol Hepatol. 2009;21(6):688–92.

    Article  CAS  PubMed  Google Scholar 

  18. Keniry A, Oxley D, Monnier P, et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol. 2012;14(7):659–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsang WP, Ng EK, Ng SS, et al. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis. 2010;31(3):350–8.

    Article  CAS  PubMed  Google Scholar 

  20. Nissan A, Stojadinovic A, Mitrani-Rosenbaum S, et al. Colon Cancer associated transcript-1: a novel RNA expressed in malignant and pre-malignant human tissues. Int J Cancer J Int Cancer. 2012;130(7):1598–606.

    Article  CAS  Google Scholar 

  21. Alaiyan B, Ilyayev N, Stojadinovic A, et al. Differential expression of colon cancer associated transcript1 (CCAT1) along the colonic adenoma-carcinoma sequence. BMC Cancer. 2013;13:196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang P, Xue Y, Han Y, et al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science. 2014;344(6181):310–3.

    Article  CAS  PubMed  Google Scholar 

  23. Marisa L, de Reynies A, Duval A, et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 2013;10(5):e1001453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim T, Cui R, Jeon YJ, Fadda P, Alder H, Croce CM. MYC-repressed long noncoding RNAs antagonize MYC-induced cell proliferation and cell cycle progression. Oncotarget. 2015;6(22):18780–9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kim T, Jeon YJ, Cui R, et al. Role of MYC-regulated long noncoding RNAs in cell cycle regulation and tumorigenesis. J Natl Cancer Inst. 2015;107(4).

  26. Kim T, Cui R, Jeon YJ, et al. Long-range interaction and correlation between MYC enhancer and oncogenic long noncoding RNA CARLo-5. Proc Natl Acad Sci U S A. 2014;111(11):4173–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  28. Klymkowsky MW, Savagner P. Epithelial-mesenchymal transition: a cancer researcher’s conceptual friend and foe. Am J Pathol. 2009;174(5):1588–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9(4):265–73.

    Article  CAS  PubMed  Google Scholar 

  30. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.

    Article  CAS  PubMed  Google Scholar 

  31. Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28(1–2):15–33.

    Article  PubMed  Google Scholar 

  32. Barrallo-Gimeno A, Nieto MA. The snail genes as inducers of cell movement and survival: implications in development and cancer. Development. 2005;132(14):3151–61.

    Article  CAS  PubMed  Google Scholar 

  33. Chung LY, Tang SJ, Sun GH, et al. Galectin-1 promotes lung cancer progression and chemoresistance by upregulating p38 MAPK, ERK, and cyclooxygenase-2. Clin Cancer Res: Off J Am Assoc Cancer Res. 2012;18(15):4037–47.

    Article  CAS  Google Scholar 

  34. Thews O, Nowak M, Sauvant C, Gekle M. Hypoxia-induced extracellular acidosis increases p-glycoprotein activity and chemoresistance in tumors in vivo via p38 signaling pathway. Adv Exp Med Biol. 2011;701:115–22.

    Article  CAS  PubMed  Google Scholar 

  35. Villedieu M, Deslandes E, Duval M, Heron JF, Gauduchon P, Poulain L. Acquisition of chemoresistance following discontinuous exposures to cisplatin is associated in ovarian carcinoma cells with progressive alteration of FAK, ERK and p38 activation in response to treatment. Gynecol Oncol. 2006;101(3):507–19.

    Article  CAS  PubMed  Google Scholar 

  36. Lian WJ, Liu G, Liu YJ, Zhao ZW, Yi T, Zhou HY. Downregulation of BMP6 enhances cell proliferation and chemoresistance via activation of the ERK signaling pathway in breast cancer. Oncol Rep. 2013;30(1):193–200.

    CAS  PubMed  Google Scholar 

  37. Wang H, Xie B, Kong Y, et al. Overexpression of RPS27a contributes to enhanced chemoresistance of CML cells to imatinib by the transactivated STAT3. Oncotarget. 2016;7(14):18638–50.

  38. Liu S, Sun J, Cai B, et al. NANOG regulates epithelial-mesenchymal transition and chemoresistance through activation of the STAT3 pathway in epithelial ovarian cancer.Tumour Biol 2016. doi:10. 1007/s13277-016-4848-x.

  39. Phi JH, Choi SA, Kim SK, Wang KC, Lee JY, Kim DG. Overcoming chemoresistance of pediatric Ependymoma by inhibition of STAT3 signaling. Transl Oncol. 2015;8(5):376–86.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang H, Sun Q, Wu Y, et al. Granzyme M expressed by tumor cells promotes chemoresistance and EMT in vitro and metastasis in vivo associated with STAT3 activation. Oncotarget. 2015;6(8):5818–31.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cheng HL, Lin CW, Yang JS, Hsieh MJ, Yang SF, Lu KH. Zoledronate blocks geranylgeranylation not farnesylation to suppress human osteosarcoma U2OS cells metastasis by EMT via Rho A activation and FAK-inhibited JNK and p38 pathways. Oncotarget. 2016;7(9):9742–58.

  42. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90.

    Article  CAS  PubMed  Google Scholar 

  43. Hong J, Zhou J, Fu J, et al. Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. Cancer Res. 2011;71(11):3980–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu L, Chen S, RC B. MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer. Oncogene. 2006;25(21):2987–98.

    Article  CAS  PubMed  Google Scholar 

  45. Xie X, Tang B, Xiao YF, et al. Long non-coding RNAs in colorectal cancer. Oncotarget. 2016;7(5):5226–39.

    PubMed  Google Scholar 

  46. Han D, Wang M, Ma N, Xu Y, Jiang Y, Gao X. Long noncoding RNAs: novel players in colorectal cancer. Cancer Lett. 2015;361(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  47. Palmieri F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Asp Med. 2013;34(2–3):465–84.

    Article  CAS  Google Scholar 

  48. Fiermonte G, De Leonardis F, Todisco S, Palmieri L, Lasorsa FM, Palmieri F. Identification of the mitochondrial ATP-Mg/pi transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution. J Biol Chem. 2004;279(29):30722–30.

    Article  CAS  PubMed  Google Scholar 

  49. Prensner JR, Chen W, Han S, et al. The long non-coding RNA PCAT-1 promotes prostate cancer cell proliferation through cMyc. Neoplasia. 2014;16(11):900–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsai MC, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329(5992):689–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. J Cell Sci. 2004;117(Pt 20):4619–28.

    Article  CAS  PubMed  Google Scholar 

  52. Bakin AV, Rinehart C, Tomlinson AK, Arteaga CL. p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci. 2002;115(Pt 15):3193–206.

    CAS  PubMed  Google Scholar 

  53. Wu P, Wu D, Zhao L. et al. Prognostic role of STAT3 in solid tumors: a systematic review and meta-analysis. Oncotarget. 2016;7(15):19863–83.

  54. Wu P, Wu D, Zhao L. et al. Prognostic role of STAT3 in solid tumors: a systematic review and meta-analysis. Oncotarget 2016.

  55. Liu J, Wan L, Lu K, et al. The long noncoding RNA MEG3 contributes to cisplatin resistance of human lung adenocarcinoma. PLoS One. 2015;10(5):e0114586.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ozes AR, Miller DF, Ozes ON et al. NF-kappaB-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer. Oncogene 2016.

  57. Takahashi K, Yan IK, Kogure T, Haga H, Patel T. Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Bio. 2014;4:458–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (81472208).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Honggang Zhang, Zhaoxu Zheng or Changzhi Huang.

Ethics declarations

Conflicts of interest

None

Electronic supplementary material

Table S1

(DOCX 13 kb)

Table S2

(DOCX 13 kb)

Table S3

(DOCX 13 kb)

Fig. S1

The characterization of SLC25A25-AS1 (a). The nucleotide sequence of full-length human SLC25A25-AS1. b Putative proteins possibly encoded by SLC25A25-AS1 as predicted by the ORF Finder. c UCSC txCdsPredict score of SLC25A25-AS1 is 192.0 (GIF 389 kb)

High resolution image (TIFF 13664 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Huang, S., Li, Y. et al. Decreased expression of LncRNA SLC25A25-AS1 promotes proliferation, chemoresistance, and EMT in colorectal cancer cells. Tumor Biol. 37, 14205–14215 (2016). https://doi.org/10.1007/s13277-016-5254-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5254-0

Keywords

Navigation