Skip to main content
Log in

Identification of a five-lncRNA signature for the diagnosis and prognosis of gastric cancer

  • Original Article
  • Published:
Tumor Biology

Abstract

Gastric cancer (GC) is one of the most aggressive malignancies and has a poor prognosis. Identifying novel diagnostic and prognostic markers is of great importance for the management and treatment of GC. Long non-coding RNAs (lncRNAs), which are involved in multiple processes during the development and progression of cancer, may act as potential biomarkers of GC. Here, by performing data mining using four microarray data sets of GC downloaded from the Gene Expression Omnibus (GEO) database with different classifiers and risk score analyses, we identified a five-lncRNA signature (AK001094, AK024171, AK093735, BC003519 and NR_003573) displaying both diagnostic and prognostic values for GC. The results of the Kaplan-Meier survival analysis and log-rank test showed that the risk score based on this five-lncRNA signature was closely associated with overall survival time (p = 0.0001). Further analysis revealed that the risk score is an independent predictor of prognosis. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis of 30 pairs of GC tissue samples confirmed that the five lncRNAs were dysregulated in GC, and receiver operating characteristic (ROC) curves showed the high diagnostic ability of combining the five lncRNAs, with an area under the curve (AUC) of 0.95 ± 0.025. The five lncRNAs involved in several cancer-related pathways were identified using gene set enrichment analysis (GSEA). These findings indicate that the five-lncRNA signature may have a good clinical applicability for determining the diagnosis and predicting the prognosis of GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

    Article  PubMed  Google Scholar 

  2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–32.

    Article  PubMed  Google Scholar 

  3. Sun Z, Wang ZN, Zhu Z, Xu YY, Xu Y, Huang BJ, et al. Evaluation of the seventh edition of American Joint Committee on Cancer TNM staging system for gastric cancer: results from a Chinese monoinstitutional study. Ann Surg Oncol. 2012;19(6):1918–27.

    Article  PubMed  Google Scholar 

  4. Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene. 2012;31(43):4577–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21(6):354–61.

    Article  CAS  PubMed  Google Scholar 

  6. Stower H. Epigenetics: X inactivation by titration. Nat Rev Genet. 2013;14(8):518.

    CAS  PubMed  Google Scholar 

  7. Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21.

    Article  CAS  PubMed  Google Scholar 

  8. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal. 2010;3(107):ra8.

    PubMed  PubMed Central  Google Scholar 

  9. Barsyte-Lovejoy D, Lau SK, Boutros PC, Khosravi F, Jurisica I, Andrulis IL, et al. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res. 2006;66(10):5330–7.

    Article  CAS  PubMed  Google Scholar 

  10. Li H, Yu B, Li J, Su L, Yan M, Zhu Z, et al. Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget. 2014;5(8):2318–29.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu XH, Sun M, Nie FQ, Ge YB, Zhang EB, Yin DD, et al. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol Cancer. 2014;13:92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, et al. Activation of p53 by MEG3 non-coding RNA. J Biol Chem. 2007;282(34):24731–42.

    Article  CAS  PubMed  Google Scholar 

  13. Day JR, Jost M, Reynolds MA, Groskopf J, Rittenhouse H. PCA3: from basic molecular science to the clinical lab. Cancer Lett. 2011;301(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  14. Li J, Chen Z, Tian L, Zhou C, He MY, Gao Y, et al. LncRNA profile study reveals a three-lncRNA signature associated with the survival of patients with oesophageal squamous cell carcinoma. Gut. 2014;63(11):1700–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.

    Article  PubMed  Google Scholar 

  16. Risueno A, Fontanillo C, Dinger ME, De Las Rivas J. GATExplorer: genomic and transcriptomic explorer; mapping expression probes to gene loci, transcripts, exons and ncRNAs. BMC Bioinformatics. 2010;11:221.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pang KC, Stephen S, Dinger ME, Engstrom PG, Lenhard B, Mattick JS. RNAdb 2.0—an expanded database of mammalian non-coding RNAs. Nucleic Acids Res. 2007;35(Database issue):D178–82.

    Article  CAS  PubMed  Google Scholar 

  18. Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013;41(17):e166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li X, Zhang Y, Zhang Y, Ding J, Wu K, Fan D. Survival prediction of gastric cancer by a seven-microRNA signature. Gut. 2010;59(5):579–85.

    Article  CAS  PubMed  Google Scholar 

  20. Meng J, Li P, Zhang Q, Yang Z, Fu S. A four-long non-coding RNA signature in predicting breast cancer survival. J Exp Clin Cancer Res. 2014;33:84.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Du J, Yuan Z, Ma Z, Song J, Xie X, Chen Y. KEGG-PATH: Kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model. Mol BioSyst. 2014;10(9):2441–7.

    Article  CAS  PubMed  Google Scholar 

  23. Nong Y, Wu D, Lin Y, Zhang Y, Bai L, Tang H. Tenascin-C expression is associated with poor prognosis in hepatocellular carcinoma (HCC) patients and the inflammatory cytokine TNF-alpha-induced TNC expression promotes migration in HCC cells. Am J Cancer Res. 2015;5(2):782–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hao NB, Tang B, Wang GZ, Xie R, CJ H, Wang SM, et al. Hepatocyte growth factor (HGF) upregulates heparanase expression via the PI3K/Akt/NF-kappaB signaling pathway for gastric cancer metastasis. Cancer Lett. 2015;361(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  25. Xiao YC, Yang ZB, Cheng XS, Fang XB, Shen T, Xia CF, et al. CXCL8, overexpressed in colorectal cancer, enhances the resistance of colorectal cancer cells to anoikis. Cancer Lett. 2015;361(1):22–32.

    Article  CAS  PubMed  Google Scholar 

  26. Marra P, Mathew S, Grigoriadis A, Wu Y, Kyle-Cezar F, Watkins J, et al. IL15RA drives antagonistic mechanisms of cancer development and immune control in lymphocyte-enriched triple-negative breast cancers. Cancer Res. 2014;74(17):4908–21.

    Article  CAS  PubMed  Google Scholar 

  27. Gu J, Ding JY, CL L, Lin ZW, Chu YW, Zhao GY, et al. Overexpression of CD88 predicts poor prognosis in non-small-cell lung cancer. Lung Cancer. 2013;81(2):259–65.

    Article  PubMed  Google Scholar 

  28. Span PN, Pollakis G, Paxton WA, Sweep FC, Foekens JA, Martens JW, et al. Improved metastasis-free survival in nonadjuvantly treated postmenopausal breast cancer patients with chemokine receptor 5 del32 frameshift mutations. Int J Cancer. 2015;136(1):91–7.

    Article  CAS  PubMed  Google Scholar 

  29. Palagani V, Bozko P, El Khatib M, Belahmer H, Giese N, Sipos B, et al. Combined inhibition of Notch and JAK/STAT is superior to monotherapies and impairs pancreatic cancer progression. Carcinogenesis. 2014;35(4):859–66.

    Article  CAS  PubMed  Google Scholar 

  30. Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14(11):736–46.

    Article  CAS  PubMed  Google Scholar 

  31. Rampal R, Al-Shahrour F, Abdel-Wahab O, Patel JP, Brunel JP, Mermel CH, et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood. 2014;123(22):e123–33.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Oshima H, Ishikawa T, Yoshida GJ, Naoi K, Maeda Y, Naka K, et al. TNF-alpha/TNFR1 signaling promotes gastric tumorigenesis through induction of Noxo1 and Gna14 in tumor cells. Oncogene. 2014;33(29):3820–9.

    Article  CAS  PubMed  Google Scholar 

  33. Yeh TS, Wu CW, Hsu KW, Liao WJ, Yang MC, Li AF, et al. The activated Notch1 signal pathway is associated with gastric cancer progression through cyclooxygenase-2. Cancer Res. 2009;69(12):5039–48.

    Article  CAS  PubMed  Google Scholar 

  34. Kim YH, Liang H, Liu X, Lee JS, Cho JY, Cheong JH, et al. AMPKalpha modulation in cancer progression: multilayer integrative analysis of the whole transcriptome in Asian gastric cancer. Cancer Res. 2012;72(10):2512–21.

    Article  CAS  PubMed  Google Scholar 

  35. Onodera Y, Nam JM, Bissell MJ. Increased sugar uptake promotes oncogenesis via EPAC/RAP1 and O-GlcNAc pathways. J Clin Invest. 2014;124(1):367–84.

    Article  CAS  PubMed  Google Scholar 

  36. Widau RC, Parekh AD, Ranck MC, Golden DW, Kumar KA, Sood RF, et al. RIG-I-like receptor LGP2 protects tumor cells from ionizing radiation. Proc Natl Acad Sci U S A. 2014;111(4):E484–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wei ZW, Xia GK, Wu Y, Chen W, Xiang Z, Schwarz RE, et al. CXCL1 promotes tumor growth through VEGF pathway activation and is associated with inferior survival in gastric cancer. Cancer Lett. 2015;359(2):335–43.

    Article  CAS  PubMed  Google Scholar 

  38. Nikitovic D, Kouvidi K, Voudouri K, Berdiaki A, Karousou E, Passi A, et al. The motile breast cancer phenotype roles of proteoglycans/glycosaminoglycans. Biomed Res Int. 2014;2014:124321.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Li Z, Zhang H, Jin H, Sun L, Dong H, et al. HIF-1alpha and HIF-2alpha correlate with migration and invasion in gastric cancer. Cancer Biol Ther. 2010;10(4):376–82.

    Article  CAS  PubMed  Google Scholar 

  40. Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152(6):1237–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qi P, Du X. The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Mod Pathol. 2013;26(2):155–65.

    Article  CAS  PubMed  Google Scholar 

  42. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.

    Article  CAS  PubMed  Google Scholar 

  43. Swanton C, Caldas C. Molecular classification of solid tumours: towards pathway-driven therapeutics. Br J Cancer. 2009;100(10):1517–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huarte M, Rinn JL. Large non-coding RNAs: missing links in cancer? Hum Mol Genet. 2010;19(R2):R152–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu Y, Wang J, Qian J, Kong X, Tang J, Wang Y, et al. Long noncoding RNA GAPLINC regulates CD44-dependent cell invasiveness and associates with poor prognosis of gastric cancer. Cancer Res. 2014;74(23):6890–902.

    Article  CAS  PubMed  Google Scholar 

  46. Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer. 2010;127(1):118–26.

    Article  CAS  PubMed  Google Scholar 

  47. Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20(5):548–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was financially supported by grants from the National Natural Science Foundation of China (Nos. 91529302, 81572798 and 81272749), the Key Projects in the National Science & Technology Pillar Program of China (No. 2014BAI09B03), the Science and Technology Fund of Shanghai Jiao Tong University School of Medicine (No. 13XJ10011) and the Shanghai Jiao Tong University Medical Engineering Cross Research Fund (No. YG2014MS59).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingya Liu or Min Yan.

Ethics declarations

Conflicts of interest

None

Additional information

Zhi-yuan Fan and Wentao Liu are contributed equally to this work

Electronic supplementary material

Table S1

The 208 common lncRNAs in the list. (XLS 35 kb)

Table S2

The re-annotated lncRNAs listed in the 2 mRNA platforms. (XLSX 218 kb)

Table S3

Weight value of the 35 lncRNAs in the 3 linear classifiers in the training set. (XLSX 14 kb)

Table S4

Detailed results of the reclassification of the samples using different classifiers in the training set. (XLSX 21 kb)

Table S5

Detailed results of the reclassification of the samples using different classifiers in the test data sets. (XLSX 37 kb)

Table S6

Variable and relative importance of the 30 lncRNAs using the random survival forest algorithm. (XLSX 12 kb)

Table S7

Detailed information of differentially expressed genes between the low-risk and high-risk groups. (XLSX 488 kb)

Table S8

GSEA results of each of the 5 lncRNAs. (XLSX 145 kb)

Fig. S1

ROC curves of the 5-lncRNA signature in diagnosing GC in GSE63089. (DOCX 129 kb)

Fig. S2

ROC curves of the 5-lncRNA signature in diagnosing GC in GSE27342. (DOCX 131 kb)

Fig. S3

ROC curves of the 5-lncRNA signature in diagnosing GC in GSE50710. (DOCX 132 kb)

Fig. S4

Melting curves of qRT-PCR for AK001094, AK024171, AK093735, BC003519 and NR_003573 and GAPDH. (a) Melting curves of qRT-PCR for AK001094. (GIF 178 kb)

High resolution image (TIFF 2327 kb)

Figure S4

(b) Melting curves of qRT-PCR for AK024171.(GIF 220 kb)

High resolution image (TIFF 2874 kb)

Figure S4

(c) Melting curves of qRT-PCR for AK093735. (GIF 233 kb)

High resolution image (TIFF 2933 kb)

Figure S4

(d) Melting curves of qRT-PCR for BC003519. (GIF 200 kb)

High resolution image (TIFF 2584 kb)

Figure S4

(e) Melting curves of qRT-PCR for NR_003573. (GIF 204 kb)

High resolution image (TIFF 2642 kb)

ESM 5

(f) Melting curves of qRT-PCR for GAPDH. (GIF 221 kb)

High resolution image (TIFF 2797 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Zy., Liu, W., Yan, C. et al. Identification of a five-lncRNA signature for the diagnosis and prognosis of gastric cancer. Tumor Biol. 37, 13265–13277 (2016). https://doi.org/10.1007/s13277-016-5185-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5185-9

Keywords

Navigation