Skip to main content

Advertisement

Log in

The MSHA strain of Pseudomonas aeruginosa (PA-MSHA) inhibits gastric carcinoma progression by inducing M1 macrophage polarization

  • Original Article
  • Published:
Tumor Biology

Abstract

Macrophages play crucial roles in promoting tumor development and progression. In the present study, we found that the mannose-sensitive hemagglutination pilus strain of Pseudomonas aeruginosa (PA-MSHA) was efficient in inducing M1 macrophage polarization. PA-MSHA treatment increases expression of M1-related cytokines and promotes activation of murine peritoneal macrophages (MPM). Interestingly, PA-MSHA inhibits cell proliferation and migration and induces the apoptosis of gastric carcinoma cells. These effects of PA-MSHA on M1 polarization were associated with activation of NF-κB expression. Thus, inducing polarization of M1 by PA-MSHA may be one potential strategy for inhibiting gastric carcinoma progression in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhou Z, Ji Z, Wang Y, Li J, Cao H, Zhu HH, et al. TRIM59 is up-regulated in gastric tumors, promoting ubiquitination and degradation of p53. Gastroenterology. 2014;147:1043–54.

    Article  CAS  PubMed  Google Scholar 

  2. Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 2006;355:11–20.

    Article  CAS  PubMed  Google Scholar 

  3. Blaylock RL. Cancer microenvironment, inflammation and cancer stem cells: a hypothesis for a paradigm change and new targets in cancer control. Surg Neurol Int. 2015;6:92.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86:1065–73.

    Article  CAS  PubMed  Google Scholar 

  5. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32:593–604.

    Article  CAS  PubMed  Google Scholar 

  6. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Biswas SK, Chittezhath M, Shalova IN, Lim JY. Macrophage polarization and plasticity in health and disease. Immunol Res. 2012;53:11–24.

    Article  CAS  PubMed  Google Scholar 

  8. Schroeder GN, Hilbi H. Cholesterol is required to trigger caspase-1 activation and macrophage apoptosis after phagosomal escape of Shigella. Cell Microbiol. 2007;9:265–78.

    Article  CAS  PubMed  Google Scholar 

  9. Galmbacher K, Heisig M, Hotz C, Wischhusen J, Galmiche A, Bergmann B, et al. Shigella mediated depletion of macrophages in a murine breast cancer model is associated with tumor regression. PLoS One. 2010;5, e9572.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hou J, Liu Y, Shao Y. The MSHA strain of Pseudomonas aeruginosa activated TLR pathway and enhanced HIV-1 DNA vaccine immunoreactivity. PLoS One. 2012;7, e47724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li T, Dong ZR, Guo ZY, Wang CH, Zhi XT, Zhou JW, et al. Mannose-mediated inhibitory effects of PA-MSHA on invasion and metastasis of hepatocellular carcinoma via EGFR/Akt/IkappaBbeta/NF-kappaB pathway. Liver Int. 2015;35:1416–29.

    Article  CAS  PubMed  Google Scholar 

  12. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  13. Rabender CS, Alam A, Sundaresan G, Cardnell RJ, Yakovlev VA, Mukhopadhyay ND, et al. The role of nitric oxide synthase uncoupling in tumor progression. Mol Cancer Res. 2015;13:1034–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meitzler JL, Antony S, Wu Y, Juhasz A, Liu H, Jiang G, et al. NADPH oxidases: a perspective on reactive oxygen species production in tumor biology. Antioxid Redox Signal. 2014;20:2873–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee JJ, Kwon HK, Lee DS, Lee SW, Lee KK, Kim KJ, et al. Mycelial extract of Phellinus linteus induces cell death in A549 lung cancer cells and elevation of nitric oxide in raw 264.7 macrophage cells. Mycobiology. 2006;34:143–7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Biswas SK, Lewis CE. NF-kappaB as a central regulator of macrophage function in tumors. J Leukoc Biol. 2010;88:877–84.

    Article  CAS  PubMed  Google Scholar 

  17. Mancino A, Lawrence T. Nuclear factor-kappaB and tumor-associated macrophages. Clin Cancer Res. 2010;16:784–9.

    Article  CAS  PubMed  Google Scholar 

  18. Blank T, Prinz M. NF-kappaB signaling regulates myelination in the CNS. Front Mol Neurosci. 2014;7:47.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang QW, Liu L, Gong CY, Shi HS, Zeng YH, Wang XZ, et al. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One. 2012;7, e50946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pantano F, Berti P, Guida FM, Perrone G, Vincenzi B, Amato MM, et al. The role of macrophages polarization in predicting prognosis of radically resected gastric cancer patients. J Cell Mol Med. 2013;17:1415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mahbub S, Deburghgraeve CR, Kovacs EJ. Advanced age impairs macrophage polarization. J Interferon Cytokine Res. 2012;32:18–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu ZB, Hou YF, Zhu J, Hu DL, Jin W, Ou ZL, et al. Inhibition of EGFR pathway signaling and the metastatic potential of breast cancer cells by PA-MSHA mediated by type 1 fimbriae via a mannose-dependent manner. Oncogene. 2010;29:2996–3009.

    Article  CAS  PubMed  Google Scholar 

  23. Buttari B, Profumo E, Segoni L, D’Arcangelo D, Rossi S, Facchiano F, et al. Resveratrol counteracts inflammation in human M1 and M2 macrophages upon challenge with 7-oxo-cholesterol: potential therapeutic implications in atherosclerosis. Oxid Med Cell Longev. 2014;2014:257543.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was carried out with the support of “Youth start-up Foundation of Changzheng hospital (Project No. 2013CZQN10).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingping Cai.

Ethics declarations

The animal experiment was carried out in accordance with the National Institute of Health Guide for the Care and Use of Laboratory Animals, with the approval of the Scientific Investigation Board of the Second Military Medical University (Shanghai, China).

Conflicts of interest

None

Additional information

Changming Wang, Zunqi Hu and Zhenxin Zhu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Hu, Z., Zhu, Z. et al. The MSHA strain of Pseudomonas aeruginosa (PA-MSHA) inhibits gastric carcinoma progression by inducing M1 macrophage polarization. Tumor Biol. 37, 6913–6921 (2016). https://doi.org/10.1007/s13277-015-4451-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4451-6

Keywords

Navigation