Skip to main content

Advertisement

Log in

The effects of bufadienolides on HER2 overexpressing breast cancer cells

  • Original Article
  • Published:
Tumor Biology

Abstract

HER2 is a proto-oncogene frequently amplified in human breast cancer, its overexpression is correlated with tamoxifen resistance and decreased recurrence-free survival. Arenobufagin and bufalin are homogeneous bufadienolides of cardiac glycosides agents. In this research, we studied the effects of arenobufagin and bufalin on cellular survival and proliferation of HER2 overexpressing breast cancer cells and the mechanism under the results including the direct effect on HER2 downstream pathways. Our results showed that arenobufagin and bufalin could significantly inhibit the proliferation and survival of HER2 overexpressing breast cancer cells, along with the declination of SRC-1, SRC-3, nuclear transcription factor E2F1, phosphorylated AKT, and ERK. And the combination of each bufadienolide in low dose with tamoxifen could significantly enhance the inhibitory effect of tamoxifen on HER2 overexpressing breast cancer cells. All above suggest that arenobufagin and bufalin may be potential therapy adjuvants for HER2 overexpressing breast cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BC:

Breast cancer

MAPK:

Mitogen-activated protein kinase

AKT:

Protein kinase B

SRC-1:

Steroid receptor coactivator-1

SRC-3:

Steroid receptor coactivator-3, TCM, traditional Chinese medicine

VEGF:

Vascular endothelial growth factor

References

  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.

    Article  PubMed  Google Scholar 

  2. Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA, et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst. 2003;95:353–61.

    Article  CAS  PubMed  Google Scholar 

  3. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst. 2004;96:926–35.

    Article  CAS  PubMed  Google Scholar 

  4. Yin L, Zhang XT, Bian XW, Guo YM, Wang ZY. Disruption of the ER-alpha36-EGFR/HER2 positive regulatory loops restores tamoxifen sensitivity in tamoxifen resistance breast cancer cells. PLoS One. 2014;9, e107369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moon YW, Park S, Sohn JH, Kang DR, Koo JS, Park HS, et al. Clinical significance of progesterone receptor and HER2 status in estrogen receptor-positive, operable breast cancer with adjuvant tamoxifen. J Cancer Res Clin Oncol. 2011;137:1123–30.

    Article  CAS  PubMed  Google Scholar 

  6. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006;366:2–16.

    Article  CAS  PubMed  Google Scholar 

  7. Parise CA, Bauer KR, Brown MM, Caggiano V. Breast cancer subtypes as defined by the estrogen receptor (ER), progesterone receptor (PR), and the human epidermal growth factor receptor 2 (HER2) among women with invasive breast cancer in California, 1999–2004. Breast J. 2009;15:593–602.

    Article  PubMed  Google Scholar 

  8. Benz CC, Scott GK, Sarup JC, Johnson RM, Tripathy D, Coronado E, et al. Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat. 1992;24:85–95.

    Article  CAS  PubMed  Google Scholar 

  9. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244:707–12.

    Article  CAS  PubMed  Google Scholar 

  10. Hubalek M, Brunner C, Mattha K, Marth C. Resistance to HER2-targeted therapy: mechanisms of trastuzumab resistance and possible strategies to overcome unresponsiveness to treatment. Wien Med Wochenschr. 2010;160:506–12.

    Article  PubMed  Google Scholar 

  11. Ross JS. Breast cancer biomarkers and HER2 testing after 10 years of anti-HER2 therapy. Drug News Perspect. 2009;22:93–106.

    Article  CAS  PubMed  Google Scholar 

  12. Liang Y, Liu AH, Qin S, Sun JH, Yang M, Li P, et al. Simultaneous determination and pharmacokinetics of five bufadienolides in rat plasma after oral administration of Chansu extract by SPE-HPLC method. J Pharm Biomed Anal. 2008;46:442–8.

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, Lonard DM, Yu Y, Chow DC, Palzkill TG, Wang J, et al. Bufalin is a potent small-molecule inhibitor of the steroid receptor coactivators SRC-3 and SRC-1. Cancer Res. 2014;74:1506–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cruz Jdos S, Matsuda H. Arenobufagin, a compound in toad venom, blocks Na(+)-K+ pump current in cardiac myocytes. Eur J Pharmacol. 1993;239:223–6.

    Article  PubMed  Google Scholar 

  15. Cruz Jdos S, Matsuda H. Depressive effects of arenobufagin on the delayed rectifier K+ current of guinea-pig cardiac myocytes. Eur J Pharmacol. 1994;266:317–25.

    Article  PubMed  Google Scholar 

  16. Zhang DM, Liu JS, Deng LJ, Chen MF, Yiu A, Cao HH, et al. Arenobufagin, a natural bufadienolide from toad venom, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of PI3K/Akt/mTOR pathway. Carcinogenesis. 2013;34:1331–42.

    Article  CAS  PubMed  Google Scholar 

  17. Li M, Wu S, Liu Z, Zhang W, Xu J, Wang Y, et al. Arenobufagin, a bufadienolide compound from toad venom, inhibits VEGF-mediated angiogenesis through suppression of VEGFR-2 signaling pathway. Biochem Pharmacol. 2012;83:1251–60.

    Article  CAS  PubMed  Google Scholar 

  18. Yin P-H, Liu X, Qiu Y-Y, Cai J-F, Qin J-M, Zhu H-R, et al. Anti-tumor activity and apoptosis-regulation mechanisms of bufalin in various cancers: new hope for cancer patients. Asian Pac J Cancer Prev. 2012;13:5339–43.

    Article  PubMed  Google Scholar 

  19. Yuan Y, Qin L, Liu D, Wu RC, Mussi P, Zhou S, et al. Genetic screening reveals an essential role of p27kip1 in restriction of breast cancer progression. Cancer Res. 2007;67:8032–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li J, Ma X, Li F, Wang J, Chen H, Wang G, et al. Preparative separation and purification of bufadienolides from Chinese traditional medicine of Chansu using high-speed counter-current chromatography. J Sep Sci. 2010;33:1325–30.

    CAS  PubMed  Google Scholar 

  21. Wright C, Nicholson S, Angus B, Sainsbury JR, Farndon J, Cairns J, et al. Relationship between c-erbB-2 protein product expression and response to endocrine therapy in advanced breast cancer. Br J Cancer. 1992;65:118–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney Jr DW, et al. Structure of the extracellular region of HER2 alone and in complex with the herceptin fab. Nature. 2003;421:756–60.

    Article  CAS  PubMed  Google Scholar 

  23. Chou TY, Chiu CH, Li LH, Hsiao CY, Tzen CY, Chang KT, et al. Mutation in the tyrosine kinase domain of epidermal growth factor receptor is a predictive and prognostic factor for Gefitinib treatment in patients with non-small cell lung cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2005;11:3750–7.

    Article  CAS  Google Scholar 

  24. Citri A, Skaria KB, Yarden Y. The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp Cell Res. 2003;284:54–65.

    Article  CAS  PubMed  Google Scholar 

  25. Ben-Levy R, Paterson HF, Marshall CJ, Yarden Y. A single autophosphorylation site confers oncogenicity to the Neu/ErbB-2 receptor and enables coupling to the map kinase pathway. EMBO J. 1994;13:3302–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Prigent SA, Gullick WJ. Identification of c-erbB-3 binding sites for phosphatidylinositol 3′-kinase and SHC using an EGF receptor/c-erbB-3 chimera. EMBO J. 1994;13:2831–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 2006;441:424–30.

    Article  CAS  PubMed  Google Scholar 

  28. Kirkegaard T, McGlynn LM, Campbell FM, Muller S, Tovey SM, Dunne B, et al. Amplified in breast cancer 1 in human epidermal growth factor receptor—positive tumors of tamoxifen-treated breast cancer patients. Clin Cancer Res: Off J Am Assoc Cancer Res. 2007;13:1405–11.

    Article  CAS  Google Scholar 

  29. Bouras T, Southey MC, Venter DJ. Overexpression of the steroid receptor coactivator AIB1 in breast cancer correlates with the absence of estrogen and progesterone receptors and positivity for p53 and HER2/neu. Cancer Res. 2001;61:903–7.

    CAS  PubMed  Google Scholar 

  30. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science. 1997;277:965–8.

    Article  CAS  PubMed  Google Scholar 

  31. Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000;14:121–41.

    CAS  PubMed  Google Scholar 

  32. Takeshita A, Cardona GR, Koibuchi N, Suen CS, Chin WW. TRAM-1, a novel 160-kDa thyroid hormone receptor activator molecule, exhibits distinct properties from steroid receptor coactivator-1. J Biol Chem. 1997;272:27629–34.

    Article  CAS  PubMed  Google Scholar 

  33. Louie MC, Zou JX, Rabinovich A, Chen HW. ACTR/AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance. Mol Cell Biol. 2004;24:5157–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu RC, Qin J, Hashimoto Y, Wong J, Xu J, Tsai SY, et al. Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) coactivator activity by I kappa B kinase. Mol Cell Biol. 2002;22:3549–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yan J, Yu CT, Ozen M, Ittmann M, Tsai SY, Tsai MJ. Steroid receptor coactivator-3 and activator protein-1 coordinately regulate the transcription of components of the insulin-like growth factor/AKT signaling pathway. Cancer Res. 2006;66:11039–46.

    Article  CAS  PubMed  Google Scholar 

  36. Xu J, Liao L, Ning G, Yoshida-Komiya H, Deng C, O’Malley BW. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci U S A. 2000;97:6379–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang Z, Rose DW, Hermanson O, Liu F, Herman T, Wu W, et al. Regulation of somatic growth by the p160 coactivator p/CIP. Proc Natl Acad Sci U S A. 2000;97:13549–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qin L, Wu YL, Toneff MJ, Li D, Liao L, Gao X, et al. NCOA1 directly targets M-CSF1 expression to promote breast cancer metastasis. Cancer Res. 2014;74:3477–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Walsh CA, Bolger JC, Byrne C, Cocchiglia S, Hao Y, Fagan A, et al. Global gene repression by the steroid receptor coactivator SRC-1 promotes oncogenesis. Cancer Res. 2014;74:2533–44.

    Article  CAS  PubMed  Google Scholar 

  40. Bracken AP, Ciro M, Cocito A, Helin K. E2F target genes: unraveling the biology. Trends Biochem Sci. 2004;29:409–17.

    Article  CAS  PubMed  Google Scholar 

  41. DeGregori J, Johnson DG. Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr Mol Med. 2006;6:739–48.

    CAS  PubMed  Google Scholar 

  42. Sharma N, Timmers C, Trikha P, Saavedra HI, Obery A, Leone G. Control of the p53-p21cip1 axis by E2f1, E2f2, and E2f3 is essential for G1/S progression and cellular transformation. J Biol Chem. 2006;281:36124–31.

    Article  CAS  PubMed  Google Scholar 

  43. Nevins JR. The Rb/E2F pathway and cancer. Hum Mol Genet. 2001;10:699–703.

    Article  CAS  PubMed  Google Scholar 

  44. Andrechek ER. HER2/neu tumorigenesis and metastasis is regulated by e2f activator transcription factors. Oncogene. 2013.

  45. Lahusen T, Fereshteh M, Oh A, Wellstein A, Riegel AT. Epidermal growth factor receptor tyrosine phosphorylation and signaling controlled by a nuclear receptor coactivator, amplified in breast cancer 1. Cancer Res. 2007;67:7256–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Razandi M, Pedram A, Park ST, Levin ER. Proximal events in signaling by plasma membrane estrogen receptors. J Biol Chem. 2003;278:2701–12.

    Article  CAS  PubMed  Google Scholar 

  47. Font de Mora J, Brown M. AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor. Mol Cell Biol. 2000;20:5041–7.

    Article  Google Scholar 

  48. Nass N, Kalinski T. Tamoxifen resistance: from cell culture experiments towards novel biomarkers. Pathol Res Pract. 2015;211:189–97.

    Article  CAS  PubMed  Google Scholar 

  49. Burandt E, Jens G, Holst F, Janicke F, Muller V, Quaas A, et al. Prognostic relevance of AIB1 (NCoA3) amplification and overexpression in breast cancer. Breast Cancer Res Treat. 2013;137:745–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from the Liaoning Province Natural Science Foundation of China (No.2013023043) and National Natural Science Foundation of China (No.510575). The authors who received the funding is Yuhui Yuan. The funders had no role in the study design, data collection and analysis, decision to publish, or the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinjin Pan, Jian Miao or Yuhui Yuan.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Mu, L., Jin, H. et al. The effects of bufadienolides on HER2 overexpressing breast cancer cells. Tumor Biol. 37, 7155–7163 (2016). https://doi.org/10.1007/s13277-015-4381-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4381-3

Keywords