Skip to main content

Advertisement

Log in

Decreased expression of p27 is associated with malignant transformation and extrathyroidal extension in papillary thyroid carcinoma

  • Original Article
  • Published:
Tumor Biology

Abstract

Cell cycle regulatory proteins including p16, p27, and p53 are well studied in various cancers. However, their single or concurrent roles related with the clinicopathological parameters are not clearly recognized. We analyzed the expression of p16, p27, and p53 cell cycle regulatory proteins in papillary thyroid carcinoma (PTC). To determine the prognostic significance of cell cycle regulatory proteins, 107 PTCs were examined. We analyzed the individual expression of p16, p27, and p53 and their concurrent expressions, with the relationship to various clinicopathological parameters including differentiation from benign lesions. High expression of p16 and p53 and low expression of p27 were related with the distinguishing of PTC from benign lesions. In addition, normal thyroidal tissue showed higher p27 expression than nodular hyperplasia. In relation to extrathyroidal extension (ETE), the low expression of p27 was related with the presence of ETE. The low expression of p27 and high expression of p16 and p53 may affect the development of PTC. In addition, low p27 expression is related with the existence of ETE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Hundahl SA, Cady B, Cunningham MP, Mazzaferri E, McKee RF, Rosai J, et al. Initial results from a prospective cohort study of 5583 cases of thyroid carcinoma treated in the United States during 1996. U.S. and German Thyroid Cancer Study Group. An American College of Surgeons Commission on Cancer Patient Care Evaluation Study. Cancer. 2000;89(1):202–17.

    Article  CAS  PubMed  Google Scholar 

  2. Davies L, Welch G. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA. 2006;295(18):2164–7. doi:10.1001/jama.295.18.2164.

    Article  CAS  PubMed  Google Scholar 

  3. Ito Y, Higashiyama T, Takamura Y, Miya A, Kobayashi K, Matsuzuka F, et al. Risk factors for recurrence to the lymph node in papillary thyroid carcinoma patients without preoperatively detectable lateral node metastasis: validity of prophylactic modified radical neck dissection. World J Surg. 2007;31(11):2085–91. doi:10.1007/s00268-007-9224-y.

    Article  PubMed  Google Scholar 

  4. Mercante G, Frasoldati A, Pedroni C, Formisano D, Renna L, Piana S, et al. Prognostic factors affecting neck lymph node recurrence and distant metastasis in papillary microcarcinoma of the thyroid: results of a study in 445 patients. Thyroid: Off J Am Thyroid Assoc. 2009;19(7):707–16. doi:10.1089/thy.2008.0270.

    Article  CAS  Google Scholar 

  5. Moreno-Egea A, Rodriguez-Gonzalez JM, Sola-Perez J, Soria-Cogollos T, Parrilla-Paricio P. Multivariate analysis of histopathological features as prognostic factors in patients with papillary thyroid carcinoma. B J Surg. 1995;82(8):1092–4.

    Article  CAS  Google Scholar 

  6. Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell. 1994;79(1):13–21. doi:0092-8674(94)90396-4 [pii].

    Article  CAS  PubMed  Google Scholar 

  7. Reinstein E, Ciechanover A. Narrative review: protein degradation and human diseases: the ubiquitin connection. Ann Intern Med. 2006;145(9):676–84.

    Article  PubMed  Google Scholar 

  8. Yang CH, Wu CC, Chen WT, Chai CY, Yang SF. Expressions of p16 and p27 in urothelial carcinoma and their prognostic value. Kaohsiung J Med Sci. 2014;30(9):453–8. doi:10.1016/j.kjms.2014.05.003.

    Article  CAS  PubMed  Google Scholar 

  9. Bodoor K, Haddad Y, Alkhateeb A, Al-Abbadi A, Dowairi M, Magableh A, et al. DNA hypermethylation of cell cycle (p15 and p16) and apoptotic (p14, p53, DAPK and TMS1) genes in peripheral blood of leukemia patients. Asian Pac J Cancer Prev: APJCP. 2014;15(1):75–84.

    Article  PubMed  Google Scholar 

  10. Knosel T, Altendorf-Hofmann A, Lindner L, Issels R, Hermeking H, Schuebbe G, et al. Loss of p16(INK4a) is associated with reduced patient survival in soft tissue tumours, and indicates a senescence barrier. J Clin Pathol. 2014;67(7):592–8. doi:10.1136/jclinpath-2013-202106.

    Article  PubMed  Google Scholar 

  11. Wang P, Pei R, Lu Z, Rao X, Liu B. Methylation of p16 CpG islands correlated with metastasis and aggressiveness in papillary thyroid carcinoma. J Chin Med Assoc. 2013;76(3):135–9. doi:10.1016/j.jcma.2012.11.007.

    Article  CAS  PubMed  Google Scholar 

  12. Zafon C, Obiols G, Castellvi J, Ramon y Cajal S, Baena JA, Mesa J. Expression of p21cip1, p27kip1, and p16INK4a cyclin-dependent kinase inhibitors in papillary thyroid carcinoma: Correlation with clinicopathological factors. Endocr Pathol. 2008;19(3):184–9. doi:10.1007/s12022-008-9037-z.

    Article  PubMed  Google Scholar 

  13. Khoo ML, Freeman JL, Witterick IJ, Irish JC, Rotstein LE, Gullane PJ, et al. Underexpression of p27/Kip in thyroid papillary microcarcinomas with gross metastatic disease. Arch Otolaryngol Head Neck Surg. 2002;128(3):253–7.

    Article  PubMed  Google Scholar 

  14. Tallini G, Garcia-Rostan G, Herrero A, Zelterman D, Viale G, Bosari S, et al. Downregulation of p27KIP1 and Ki67/Mib1 labeling index support the classification of thyroid carcinoma into prognostically relevant categories. Am J Surg Pathol. 1999;23(6):678–85.

    Article  CAS  PubMed  Google Scholar 

  15. Ciechanover A, Shkedy D, Oren M, Bercovich B. Degradation of the tumor suppressor protein p53 by the ubiquitin-mediated proteolytic system requires a novel species of ubiquitin-carrier protein, E2. J Biol Chem. 1994;269(13):9582–9.

    CAS  PubMed  Google Scholar 

  16. Dobashi Y, Sakamoto A, Sugimura H, Mernyei M, Mori M, Oyama T, et al. Overexpression of p53 as a possible prognostic factor in human thyroid carcinoma. Am J Surg Pathol. 1993;17(4):375–81.

    Article  CAS  PubMed  Google Scholar 

  17. Hosal SA, Apel RL, Freeman JL, Azadian A, Rosen IB, LiVolsi VA, et al. Immunohistochemical localization of p53 in human thyroid neoplasms: correlation with biological behavior. Endocr Pathol. 1997;8(1):21–8.

    Article  PubMed  Google Scholar 

  18. Zedenius J, Larsson C, Wallin G, Backdahl M, Aspenblad U, Hoog A, et al. Alterations of p53 and expression of WAF1/p21 in human thyroid tumors. Thyroid: Off J Am Thyroid Assoc. 1996;6(1):1–9.

    Article  CAS  Google Scholar 

  19. Bai J, Zhou Y, Chen G, Zeng J, Ding J, Tan Y, et al. Overexpression of Cullin1 is associated with poor prognosis of patients with gastric cancer. Hum Pathol. 2011;42(3):375–83. doi:10.1016/j.humpath.2010.09.003.

    Article  CAS  PubMed  Google Scholar 

  20. Gillett CE, Barnes DM. Demystified cell cycle. Mol Pathol MP. 1998;51(6):310–6.

    Article  CAS  PubMed  Google Scholar 

  21. Xu Y, Yang EM, Brugarolas J, Jacks T, Baltimore D. Involvement of p53 and p21 in cellular defects and tumorigenesis in atm-/- mice. Mol Cell B Siology. 1998;18(7):4385–90.

    Article  CAS  Google Scholar 

  22. Sharpless NE. INK4a/ARF: a multifunctional tumor suppressor locus. Mutat Res Fundam Mol Mech Mutagen. 2005;576(1–2):22–38. doi:10.1016/j.mrfmmm.2004.08.021.

    Article  CAS  Google Scholar 

  23. Ortega S, Malumbres M, Barbacid M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2002;1602(1):73–87. doi:10.1016/S0304-419X(02)00037-9.

    Article  CAS  Google Scholar 

  24. Lam AK, Lo CY, Leung P, Lang BH, Chan WF, Luk JM. Clinicopathological roles of alterations of tumor suppressor gene p16 in papillary thyroid carcinoma. Ann Surg Oncol. 2007;14(5):1772–9. doi:10.1245/s10434-006-9280-9.

    Article  PubMed  Google Scholar 

  25. Boltze C, Zack S, Quednow C, Bettge S, Roessner A, Schneider-Stock R. Hypermethylation of the CDKN2/p16INK4A promotor in thyroid carcinogenesis. Pathol Res Pract. 2003;199(6):399–404. doi:10.1078/0344-0338-00436.

    Article  CAS  PubMed  Google Scholar 

  26. Ball E, Bond J, Franc B, DeMicco C, Wynford-Thomas D. An immunohistochemical study of p16INK4a expression in multistep thyroid tumourigenesis. Eur J Cancer. 2007;43(1):194–201. doi:10.1016/j.ejca.2006.08.025.

    Article  CAS  PubMed  Google Scholar 

  27. Wander SA, Zhao D, Slingerland JM. P27: a barometer of signaling deregulation and potential predictor of response to targeted therapies. Clin Cancer Res: Off J Am Assoc Cancer Res. 2011;17(1):12–8. doi:10.1158/1078-0432.ccr-10-0752.

    Article  CAS  Google Scholar 

  28. Karlidag T, Cobanoglu B, Keles E, Alpay HC, Ozercan I, Kaygusuz I, et al. Expression of Bax, p53, and p27/kip in patients with papillary thyroid carcinoma with or without cervical nodal metastasis. Am J Otolaryngol. 2007;28(1):31–6. doi:10.1016/j.amjoto.2006.06.008.

    Article  CAS  PubMed  Google Scholar 

  29. Isobe M, Emanuel BS, Givol D, Oren M, Croce CM. Localization of gene for human p53 tumour antigen to band 17p13. Nature. 1986;320(6057):84–5. doi:10.1038/320084a0.

    Article  CAS  PubMed  Google Scholar 

  30. McBride OW, Merry D, Givol D. The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc Natl Acad Sci U S A. 1986;83(1):130–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lamb P, Crawford L. Characterization of the human p53 gene. Mol Cell Biol. 1986;6(5):1379–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bai L, Zhu WG, P53: Structure, function and therapeutic applications. 2006.

  33. Mollereau B, Ma D. The p53 control of apoptosis and proliferation: lessons from drosophila. Apoptosis: Int J Programmed Cell Death. 2014;19(10):1421–9. doi:10.1007/s10495-014-1035-7.

    Article  CAS  Google Scholar 

  34. Horie S, Maeta H, Endo K, Ueta T, Takashima K, Terada T. Overexpression of p53 protein and MDM2 in papillary carcinomas of the thyroid: correlations with clinicopathologic features. Pathol Int. 2001;51(1):11–5.

    Article  CAS  PubMed  Google Scholar 

  35. Morita N, Ikeda Y, Takami H. Clinical significance of p53 protein expression in papillary thyroid carcinoma. World J Surg. 2008;32(12):2617–22. doi:10.1007/s00268-008-9756-9.

    Article  PubMed  Google Scholar 

  36. Shin MK, Kim JW. Clinicopathologic and diagnostic significance of p53 protein expression in papillary thyroid carcinoma. Asian Pac J Cancer Prev: APJCP. 2014;15(5):2341–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Hee Sohn.

Ethics declarations

Ethical approval

For this type of study, formal consent is not required.

Conflicts of interest

None

Additional information

Sung-Im Do and Dong Hyun Kim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, SI., Kim, D.H., Yang, JH. et al. Decreased expression of p27 is associated with malignant transformation and extrathyroidal extension in papillary thyroid carcinoma. Tumor Biol. 37, 3359–3364 (2016). https://doi.org/10.1007/s13277-015-4163-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4163-y

Keywords

Navigation